《解方程》教學(xué)反思范文
身為一位優(yōu)秀的老師,教學(xué)是重要的工作之一,寫教學(xué)反思可以快速提升我們的教學(xué)能力,如何把教學(xué)反思做到重點(diǎn)突出呢?下面是小編為大家整理的《解方程》教學(xué)反思范文,希望對(duì)大家有所幫助。
《解方程》教學(xué)反思范文1
《解方程》是學(xué)生接觸方程以來(lái)的第一堂計(jì)算課,理解“方程的解”、“解方程”兩個(gè)概念;會(huì)運(yùn)用天平平衡的道理解簡(jiǎn)單的方程。本著孩子比較感興趣的基礎(chǔ)上,本節(jié)課我采用的是課前預(yù)習(xí),課上交流的形式進(jìn)行,整節(jié)課大多數(shù)孩子在預(yù)習(xí)的基礎(chǔ)上能夠掌握方程的解法,但是個(gè)別孩子沒(méi)有掌握,F(xiàn)反思如下:
1、出示預(yù)習(xí)提綱,讓孩子預(yù)習(xí)有根據(jù)。
為讓孩子形成自覺(jué)的學(xué)習(xí)習(xí)慣,師指導(dǎo)孩子進(jìn)行預(yù)習(xí),出示了以下三個(gè)問(wèn)題:
一是什么是方程的解?舉例說(shuō)明。
二是什么是解方程?你是根據(jù)什么來(lái)解方程?
三是如何進(jìn)行方程的檢驗(yàn)?
好多孩子能夠?qū)@幾個(gè)問(wèn)題進(jìn)行探究,并對(duì)意義理解比較深刻。
2、課上交流。
交流是學(xué)生思維火花的碰撞。對(duì)于什么是方程的解,孩子們舉例子,根據(jù)例題來(lái)詮釋方程的解的意義。在進(jìn)行交流根據(jù)什么來(lái)解方程的環(huán)節(jié)中,孩子們各抒已見(jiàn),有的是用加法中各部分間的關(guān)系,有的是用等式的性質(zhì),還有的還接口答。依次把方法展示給大家,讓孩子明白方程的`解的意義和解方程的過(guò)程。再確定統(tǒng)一的解答方法,這個(gè)環(huán)節(jié)孩子興趣很高,大部分孩子能夠?qū)W會(huì)利用等式的性質(zhì)進(jìn)行解方程。整個(gè)的環(huán)節(jié)讓孩子在探究中發(fā)現(xiàn)規(guī)律,找到方法,學(xué)生學(xué)的開(kāi)心,對(duì)于概念的理解也很扎實(shí)。
《解方程》教學(xué)反思范文2
前兩天講解了簡(jiǎn)單的方程的解法,加法、減法乘法除法的,覺(jué)得孩子們接受的不錯(cuò),一節(jié)課下來(lái)練習(xí)了好多題,每個(gè)孩子都能得心應(yīng)手,自己還有點(diǎn)竊喜?墒墙裉靺s讓我大跌眼鏡。
昨天上課講解了例4和例5,孩子們對(duì)了復(fù)雜的方程有了初步認(rèn)識(shí),但在每一步的分析之下孩子們也覺(jué)得很熟悉,原來(lái)是簡(jiǎn)單的方程結(jié)合在一起變成復(fù)雜的,只要掌握運(yùn)算順序就不難,結(jié)合例題的'圖示,分彩筆的例子,先分什么再分什么,讓學(xué)生明白在具體算式中也是結(jié)合著實(shí)物圖來(lái)做,先把3x看做一個(gè)整體,把剩下的4根彩筆減掉,要想得到一整盒x根的彩筆,就得把3整盒再平均分配,這樣下來(lái)孩子們能夠明白每一步的意思,他們能夠知道先處理多余的彩筆,再考慮整盒的彩筆。這樣下來(lái)理解也不是問(wèn)題,又練了幾道同類的題,也很順手。例5的講解上有些難度,孩子始終不太理解把括號(hào)看做一個(gè)整體,但在講解和練習(xí)下也能做上了。
今天我想驗(yàn)收一下昨天學(xué)的怎么樣,結(jié)果讓我很頭疼,為什么過(guò)了一宿好多同學(xué)又沒(méi)了思緒,留了6道題,少數(shù)幾個(gè)好同學(xué)能夠順利的做上,大部分同學(xué)還在思索著,課下輔導(dǎo)了幾個(gè)差生,原來(lái)他們又把前面學(xué)的簡(jiǎn)單的方程解法又忘了,自己思考了一下,得給孩子們消化時(shí)間,課上會(huì)了不代表他們一直不忘,還得多加練習(xí)啊
《解方程》教學(xué)反思范文3
本節(jié)課的內(nèi)容是在學(xué)生學(xué)習(xí)了用字母表示數(shù)、等式的性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的。本冊(cè)教材的解方程不僅安排了形如x+a=bx—a=bax=bx÷a=b這樣的簡(jiǎn)單方程,還安排了形如a—x=ba÷x=b這樣的特殊方程。
成功之處:
1、淡化依據(jù)逆運(yùn)算關(guān)系解方程,與初中數(shù)學(xué)相銜接。根據(jù)《標(biāo)準(zhǔn)(20xx)》的要求,從小學(xué)就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法,這樣就避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于改善和加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接。從而摒棄了原來(lái)依據(jù)逆運(yùn)算解方程的思路,能有效降低學(xué)生學(xué)習(xí)的難度,也降低了記憶的難度。實(shí)際上依據(jù)逆運(yùn)算解方程就是用算術(shù)的思路求未知數(shù),只適合解一些簡(jiǎn)單的方程,到了中學(xué)還要重新另起爐灶。因此,利用等式的性質(zhì)解方程能夠幫助學(xué)生深入的理解方程的意義,能深入理解方程所揭示的等量關(guān)系,也更有助于逐步感悟方程的實(shí)質(zhì)、等價(jià)思想和建模思想。
2、重點(diǎn)教學(xué)特殊方程,體會(huì)用等式性質(zhì)解方程的優(yōu)勢(shì)。在例3的教學(xué)中,先讓學(xué)生自主嘗試解方程20—x=9,大部分學(xué)生依據(jù)前面學(xué)習(xí)的'內(nèi)容寫成了下面的過(guò)程:20—x=9
解:20—x+20=9+20 x=29
可是學(xué)生經(jīng)過(guò)檢驗(yàn)發(fā)現(xiàn)x=29并不是方程的解,從而引導(dǎo)學(xué)生討論怎樣把新知識(shí)轉(zhuǎn)化為舊知識(shí)來(lái)解決問(wèn)題。
不足之處:
1、在練習(xí)中由于課本這樣的練習(xí)太少,沒(méi)有增加相應(yīng)的題目,學(xué)生熟練的程度還是比較欠缺。
2、學(xué)生對(duì)于歸納總結(jié)出來(lái)的特殊方程的解法還沒(méi)有內(nèi)化,導(dǎo)致學(xué)生出現(xiàn)解普通方程和特殊方程在解法上相混淆。
再教設(shè)計(jì):
1、及時(shí)總結(jié)特殊方程的解法:當(dāng)未知數(shù)是減數(shù)或除數(shù)時(shí),方程兩邊要同時(shí)加上或乘未知數(shù),再解方程。
2、要弄清什么是減數(shù)和除數(shù),避免出現(xiàn)不必要的錯(cuò)誤。
《解方程》教學(xué)反思范文4
教學(xué)《解方程》這部分內(nèi)容時(shí),我一開(kāi)始就有些擔(dān)心學(xué)生不容易學(xué)好。因?yàn)榉匠痰乃季S方式和原來(lái)的解決問(wèn)題思考方式完全不同,而學(xué)生已經(jīng)著慣了原來(lái)的思考模式,恐怕很難接受新的方法,即使這種方法的思維含量更少,完全不用拐彎抹角地思考,不用逆向思維。學(xué)生對(duì)于新的東西,總是因?yàn)椴皇煜ざ穸ㄋ暮?jiǎn)便好用,因?yàn)閷?duì)他們來(lái)說(shuō)用起來(lái)不熟練就是不方便的。其次是解方程、驗(yàn)算、用方程解決問(wèn)題等都需要固定的格式,學(xué)生要花時(shí)間適應(yīng)這種格式記住這種格式,并熟練地應(yīng)用也是一大難點(diǎn)。
在上課時(shí),我是先按照書上例子展開(kāi)教學(xué)。然后我說(shuō)明,列方程解決問(wèn)題就是把實(shí)際情況最直接地表示出來(lái),比如天平左邊是杯子和水,水的質(zhì)量是x克,就寫100+x,右邊是砝碼250克,左右平衡,用等號(hào)連接,列成的方程就是100+x=250。
接著教學(xué)怎么解方程,求出方程的解。我讓學(xué)生自己來(lái)求x等于多少,學(xué)生都能解決。書上介紹的方法是兩邊同時(shí)減去同一個(gè)數(shù),左右兩邊仍然相等。但是學(xué)生的方法都是根據(jù)加法算式中各數(shù)的關(guān)系來(lái)求的。即使有些學(xué)生說(shuō)不清自己是用什么方法,我也能看得出來(lái)是用這種方法。我肯定了學(xué)生的方法,再?gòu)奶炱降脑沓霭l(fā)介紹了書上的方法,然后問(wèn)學(xué)生:你們喜歡哪種方法?學(xué)生幾乎異口同聲地肯定了自己的方法。因此,我說(shuō),那我們就用自己用得好的方法來(lái)求方程中的未知數(shù),。同時(shí),介紹了使方程左右兩邊相等的未知數(shù)的值叫方程的解,求出方程的解的過(guò)程叫解方程。認(rèn)識(shí)了概念后,要及時(shí)加以鞏固。我出了兩道題幫助學(xué)生鞏固概念。
二是讓學(xué)生來(lái)解方程。學(xué)生很快能算出來(lái),我告訴學(xué)生解方程的寫法跟我們以前的計(jì)算寫法不同,它有特定的格式,我一邊講解格式一邊板書。要求學(xué)生讀一讀解方程的過(guò)程,看是否理解,再在自己的本子上寫出過(guò)程。然后重新做了一道加以鞏固。接下來(lái)的難點(diǎn)是驗(yàn)算。我先講解怎么驗(yàn)算,再請(qǐng)學(xué)生來(lái)說(shuō)驗(yàn)算過(guò)程,然后把驗(yàn)算過(guò)程也按照特定格式寫下來(lái)。
學(xué)生作業(yè)反饋時(shí),有幾個(gè)問(wèn)題:
一、用方程表示題目中的數(shù)量關(guān)系很多都用老方法;
二、解方程的'格式寫法容易出錯(cuò);
三、方程的解的驗(yàn)算過(guò)程不是很理解,經(jīng)常出錯(cuò)。
作業(yè)講評(píng)時(shí)我們一起糾正了錯(cuò)誤,概括了錯(cuò)誤類型,要求學(xué)生避免這些錯(cuò)誤,然而一些學(xué)生依然在重復(fù)原來(lái)的錯(cuò)誤。這是數(shù)學(xué)教學(xué)中常有的現(xiàn)象,有些題目第一次用了錯(cuò)誤的方法,往往糾正很多次還是著慣用錯(cuò)誤的方法。
我反思了自己的教學(xué),也有幾點(diǎn)想法:
一、用方程來(lái)表示數(shù)量關(guān)系學(xué)生出現(xiàn)困難,是通過(guò)我的幫助列出方程,我并沒(méi)有及時(shí)讓學(xué)生鞏固方法。
二、解方程、驗(yàn)算的過(guò)程和格式的教學(xué)以我的講解為主,而那時(shí)我沒(méi)有想辦法很好的提高學(xué)生的注意力,因此學(xué)生練著時(shí)丟三落四較多。
三、我的講解過(guò)多,學(xué)生自己的思考過(guò)少,類似于灌輸,學(xué)生學(xué)著較被動(dòng),到最后模仿解法和格式為主,卻沒(méi)有理解為什么這樣寫,因此學(xué)生有時(shí)正確,有時(shí)出錯(cuò),沒(méi)有掌握好。
四、這個(gè)教學(xué)內(nèi)容對(duì)我們的學(xué)生來(lái)說(shuō),難點(diǎn)較多,而我并沒(méi)有為學(xué)生的接受能力進(jìn)行減負(fù)思考,一股腦地把所有新的東西都倒給學(xué)生,造成學(xué)生超負(fù)荷。
《解方程》教學(xué)反思范文5
方程是應(yīng)用非常廣泛的數(shù)學(xué)工具,它在義務(wù)教育階段的數(shù)學(xué)課程中占重要地位。一元一次方程是最簡(jiǎn)單、最基本的代數(shù)方程,它不僅在實(shí)際中有廣泛的應(yīng)用,而且是學(xué)習(xí)二元一次方程組、一元二次方程、分式方程等等知識(shí)的基礎(chǔ)。解方程既是本章的重點(diǎn),也為今后學(xué)習(xí)其他方程、不等式及函數(shù)有重要基礎(chǔ)作用。為了使學(xué)生牢固掌握解方程體會(huì)方程是刻畫現(xiàn)實(shí)世界的一個(gè)有效的數(shù)學(xué)模型,產(chǎn)生學(xué)習(xí)解方程的欲望,教材設(shè)置了新穎的問(wèn)題情境,讓學(xué)生從具體的情境中獲取信息,列方程,然后嘗試主動(dòng)探究方程的解法。并通過(guò)練習(xí)歸納掌握解方程的基本步驟和技能。
本節(jié)課的整體過(guò)程是這樣的:先利用等式的性質(zhì)來(lái)解方程,從而引出了移項(xiàng)的概念,然后讓學(xué)生利用移項(xiàng)的方法來(lái)解方程,第一次接觸這部分內(nèi)容,所以在方程的選擇上,都是移項(xiàng)后,同類項(xiàng)的合并比較簡(jiǎn)單,與前一節(jié)內(nèi)容相比較,可輕易感受到這種解法的簡(jiǎn)潔性;講解完成后,進(jìn)一步給出了練一練的兩個(gè)方程,讓學(xué)生動(dòng)手去做;仔細(xì)觀察學(xué)生的練習(xí)過(guò)程,出現(xiàn)了很多困難。
總結(jié)一下,大致有以下幾種比較常見(jiàn)的情況:①含未知數(shù)的項(xiàng)不知道如何處理;②移項(xiàng)沒(méi)有變號(hào);③沒(méi)移動(dòng)的項(xiàng)也改變了符號(hào);針對(duì)以上情況,利用課堂時(shí)間,先讓有困難的學(xué)生說(shuō)一下自己在解題過(guò)程中出現(xiàn)的困難,讓其他同學(xué)幫助他找出錯(cuò)誤并加以解決,這樣更能促進(jìn)同學(xué)間的相互進(jìn)步。由于時(shí)間的關(guān)系,本節(jié)課這一點(diǎn)做得還不夠完善,可從學(xué)生的課堂練習(xí)中反應(yīng)出來(lái)。再讓學(xué)生總結(jié)注意點(diǎn),教師進(jìn)行點(diǎn)撥。最后的學(xué)生小結(jié)并不是一種形式,通過(guò)小結(jié)教師能很好地看出學(xué)生的知識(shí)形成和掌握情況。
總的來(lái)說(shuō),雖然課堂上同學(xué)們總結(jié)錯(cuò)誤點(diǎn)總結(jié)得不錯(cuò),但學(xué)生對(duì)解方程的掌握仍浮于表面,練習(xí)少了,課后作業(yè)中的問(wèn)題也就出來(lái)了;第一,解題中部分同學(xué)仍采用原來(lái)的`等式性質(zhì)進(jìn)行;第二,移項(xiàng)時(shí)符號(hào)還是一個(gè)大問(wèn)題;所以總的說(shuō)來(lái),這課堂效率不高,沒(méi)有完成基本的課堂任務(wù);學(xué)生一節(jié)課下來(lái)還是少了練習(xí)的機(jī)會(huì),看來(lái)對(duì)求解的題目,課堂上需要更多的練習(xí),從題目中去反饋會(huì)顯得更加適合。在新教材的講解中,有時(shí)還是要借鑒老教材的一些好的方法。另外,本節(jié)課沒(méi)完成的任務(wù),希望能在下面的時(shí)間里盡快進(jìn)行補(bǔ)充,讓學(xué)生能及時(shí)對(duì)知識(shí)進(jìn)行掌握。
我始終遵照“堅(jiān)持啟發(fā)式,反對(duì)注入式”的教學(xué)原則。即在課堂上,凡是學(xué)生自己努力能解的方程都應(yīng)由學(xué)生自己解決完成。
解方程是重點(diǎn),要求人人過(guò)關(guān)。通過(guò)實(shí)驗(yàn)教學(xué),達(dá)到預(yù)期滿意效果。不僅有利于學(xué)生的學(xué)習(xí),更有利于教師的發(fā)展。
《解方程》教學(xué)反思范文6
教學(xué)解方程共5個(gè)例題,以前的教法是利用加減乘除各部分之間的關(guān)系解;新教材使用的方法是利用等式的性質(zhì),應(yīng)該說(shuō)這種方法不用怎樣理解,方程兩邊同時(shí)加減乘除一個(gè)數(shù),方程兩邊依然相等。而利用加減乘除各部分之間的關(guān)系解,學(xué)生由于因各部分之間的關(guān)系混亂容易出錯(cuò),而初中的教學(xué)也是利用了等式的性質(zhì),于是和本組老師討論了一下,確定利用等式的性質(zhì)進(jìn)行教學(xué),最后學(xué)生掌握方法之后,再利用加減乘除各部分之間的`關(guān)系講解一遍。然后讓學(xué)生根據(jù)自己實(shí)際情況靈活運(yùn)用。
可是跟設(shè)想的不一樣,利用等式的性質(zhì)進(jìn)行教學(xué)時(shí),有些地方學(xué)生還是不好理解,我分析了一下,覺(jué)得存在這樣的問(wèn)題。
1、如32-X=45,6÷x=3這樣的方程,X在里面,學(xué)生不好理解為什么方程兩邊同時(shí)加X(jué)或同時(shí)乘X,我和學(xué)生又從天平開(kāi)始,講解,如果兩邊同時(shí)減32,或同時(shí)除以6,依然算不出X,我們?nèi)绻瑫r(shí)加X(jué)或同時(shí)乘X,然后變成a+X=b或ax=b的形式,再利用所學(xué)的方法進(jìn)行解方程就可以了,可是依然有部分學(xué)生沒(méi)有掌握起來(lái)。
2、書寫問(wèn)題,利用等式的性質(zhì)進(jìn)行解方程時(shí),書寫比較繁瑣,學(xué)生在比較之后,還是覺(jué)得用加減乘除各部分之間的關(guān)系解題時(shí),書寫簡(jiǎn)單一些。
所以,鑒于存在的問(wèn)題,應(yīng)該讓兩種方法同時(shí)并存,讓學(xué)生根據(jù)自己情況,靈活選擇解方程的方法。
《解方程》教學(xué)反思范文7
解方程是數(shù)學(xué)領(lǐng)域里一個(gè)關(guān)鍵的知識(shí),在實(shí)際中,擁有方程的解法之后,很多人不會(huì)算式解題,但是能用方程解題,足以見(jiàn)得方程可以做到一些算式無(wú)法超越的能力。而如今五年級(jí)的學(xué)生開(kāi)始學(xué)習(xí)解方程,作為教師的我更應(yīng)該讓學(xué)生吃透這方程,突破這重難點(diǎn)。
在教這單元之前,我一直困惑解方程要采用初中的“移項(xiàng)”解題,還是運(yùn)用書本的“等式性質(zhì)”解題,還有老教材中提到的運(yùn)用關(guān)系式各部分之間的關(guān)系來(lái)解決?面對(duì)困惑,向老教師請(qǐng)教,學(xué)生該吸收那種方法呢?困惑,學(xué)生該如何下手,運(yùn)用“移項(xiàng)”解題,學(xué)生對(duì)于這個(gè)概念或許不會(huì)系統(tǒng)清晰,但是“等式性質(zhì)”解題時(shí),在碰到a-x=b和a÷x=b此類的方程,學(xué)生能如何下手,“四則運(yùn)算之間的關(guān)系”老教材的方式改變,必有他的理由,能用嗎?困惑!我先了解改革的原因(摘自教學(xué)參考書):新教材編寫者如此說(shuō)明:長(zhǎng)期以來(lái),小學(xué)教學(xué)簡(jiǎn)易方程時(shí),方程變形的依據(jù)總是加減運(yùn)算的關(guān)系或乘除運(yùn)算之間的關(guān)系,這實(shí)際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來(lái)教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對(duì)中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接。從這不難看出,為了和中學(xué)教學(xué)解方程的方法保持一致,是此次改革的主要原因。但是從另一方面看出老教材的方法并無(wú)錯(cuò)誤,而且能讓學(xué)生清楚準(zhǔn)確地掌握實(shí)際解題,面對(duì)題目不會(huì)盲目,而采用等式基本性質(zhì)給學(xué)生帶來(lái)的是局部的銜接,而存在局部對(duì)學(xué)生會(huì)更困難,如a-x=b和a÷x=b此類的方程。了解這一信息,我決定采用新老教材一起使用,先從教材中的運(yùn)用等式基本性質(zhì)教學(xué)孩子會(huì)解簡(jiǎn)單的方程,以便初中學(xué)習(xí)可以銜接,而初中的“移項(xiàng)”也會(huì)順利的接收,但是面對(duì)現(xiàn)在五年級(jí)的思維和解題的.方便性,我再教學(xué)老教材的“四則運(yùn)算關(guān)系”解放程,至少這樣能讓現(xiàn)在的學(xué)生會(huì)解各種題型的方程。在我看來(lái),這樣的教學(xué)書本的知識(shí)不丟,方法又可以多種變通。
通過(guò)這塊知識(shí)的整理,我感覺(jué)到教材需要教師好好的研究,才能用最合適的方式去教導(dǎo)學(xué)生,數(shù)學(xué)經(jīng)常存在一種一題多解情況,老師就是引導(dǎo)學(xué)生走最好最合適的路。
《解方程》教學(xué)反思范文8
今天,上了冀教版五年級(jí)上冊(cè)《解方程》一課,我就本節(jié)課的得與失做一下反思。
一、課程分析
方程是五年級(jí)學(xué)生接觸的一種新的知識(shí)內(nèi)容,在建立了用字母表示數(shù)的已有知識(shí)基礎(chǔ)上,進(jìn)一步學(xué)習(xí)本節(jié)課內(nèi)容,方程是數(shù)學(xué)數(shù)與代數(shù)部分的內(nèi)容,起著舉足輕重的作用。方程是學(xué)生解決數(shù)學(xué)問(wèn)題一種重要工具,日后初中、高中時(shí)時(shí)刻刻離不開(kāi)方程。所以,我對(duì)本單元內(nèi)容很重視,也給學(xué)生講述其重要性,重點(diǎn)還是要讓學(xué)生在學(xué)習(xí)、使用的過(guò)程中體會(huì)方程的優(yōu)勢(shì)。本節(jié)課是本單元的第三節(jié)內(nèi)容,在學(xué)習(xí)了等式的性質(zhì)的基礎(chǔ)上,解簡(jiǎn)單的方程。因此,我制訂了以下教學(xué)目標(biāo):
1.經(jīng)歷自主探究、合作交流學(xué)習(xí)利用等式的性質(zhì)解方程的過(guò)程。
2.能根據(jù)具體情境,找到等量關(guān)系、列方程并解簡(jiǎn)單的方程。
3.積極參與數(shù)學(xué)活動(dòng),獲得運(yùn)用已有知識(shí)解決問(wèn)題的`成功體驗(yàn),激發(fā)解方程的興趣。
二、教學(xué)過(guò)程
1.復(fù)習(xí)舊知導(dǎo)入。復(fù)習(xí)剛剛學(xué)過(guò)的等式的性質(zhì),學(xué)生舉例說(shuō)明。
2.交流解疑。先對(duì)子交流、小組交流,解決預(yù)習(xí)過(guò)程中的疑問(wèn),同時(shí)整理出小組未能解決的疑難問(wèn)題。
3.展示交流。學(xué)生代表1展示問(wèn)題1的解決方法,學(xué)生提問(wèn)、補(bǔ)充。這里使學(xué)生理解用方程解決問(wèn)題的步驟、解方程的方法、檢驗(yàn)的方法。學(xué)生代表2展示問(wèn)題2的解決方法,再次理解以上問(wèn)題。
4.理解新概念。觀察兩個(gè)解方程的式子,理解方程的解、解方程的概念。讓學(xué)生對(duì)比理解方程的解是結(jié)果,解方程是過(guò)程。
5.鞏固訓(xùn)練、強(qiáng)調(diào)細(xì)節(jié)。學(xué)生自主完成試一試兩題,出錯(cuò)時(shí)讓學(xué)生指正。若未出錯(cuò),強(qiáng)調(diào)注意寫“解”、等號(hào)對(duì)齊等細(xì)節(jié)。
三、課后反思
本節(jié)課需要改進(jìn)的地方
1.學(xué)習(xí)目標(biāo)的制定與出示。上課之前只給學(xué)生說(shuō)了我們本節(jié)課要利用等式基本性質(zhì)來(lái)解方程,目標(biāo)不具體。我們應(yīng)為學(xué)生制定具體的學(xué)習(xí)目標(biāo),同時(shí)要讓學(xué)生知道?梢栽诮o學(xué)生預(yù)習(xí)時(shí),給學(xué)生以問(wèn)題的形式出示給學(xué)生。一次本節(jié)課學(xué)習(xí)目標(biāo)應(yīng)為:(1)用方程解決問(wèn)題的步驟是什么?(2)解方程的依據(jù)是什么?(3)什么叫方程的解?什么叫解方程?
2.舊知復(fù)習(xí)時(shí)間過(guò)長(zhǎng)。學(xué)生復(fù)習(xí)等式性質(zhì)時(shí),舉例出現(xiàn)問(wèn)題,浪費(fèi)了許多時(shí)間,造成了前松后緊的局面。應(yīng)該簡(jiǎn)單復(fù)習(xí),或讓學(xué)生在探索新知的過(guò)程中發(fā)現(xiàn)舊知,復(fù)習(xí)舊知。
3.小組合作的實(shí)效性。現(xiàn)在我班的小組合作還不扎實(shí),或者說(shuō)實(shí)效性不強(qiáng)。學(xué)生在討論的過(guò)程中不知道該如何合作、如何交流?梢哉f(shuō)是有形無(wú)實(shí),接下來(lái)要再次培訓(xùn)組長(zhǎng),讓組長(zhǎng)有組織、帶領(lǐng)小組同學(xué)有效合作。同時(shí),訓(xùn)練其他同學(xué)如何參與,交流什么。使小組合作更具實(shí)效性。
四、教學(xué)思考
1.教學(xué)有法,但無(wú)定法。我們?cè)谇笠蓢L試的主體學(xué)習(xí)方法下,應(yīng)探索出屬于自己的上課模式或者方法。我一直在想數(shù)學(xué)四大模塊應(yīng)有不同的教學(xué)方法,例如圖形問(wèn)題注重操作、可能性問(wèn)題注重游戲體驗(yàn)等。
2.全面關(guān)注學(xué)生,關(guān)注全體學(xué)生。我的班級(jí)是一個(gè)比較活躍的班級(jí),這里的活躍其實(shí)只是課堂上七、八個(gè)積極同學(xué)的表現(xiàn),這種現(xiàn)象的背后還有更多的同學(xué)沒(méi)有參與、只是聽(tīng)眾,沒(méi)有參與就沒(méi)有思考,沒(méi)有思考地學(xué)數(shù)學(xué)何來(lái)成效。所以最近一直在關(guān)注大號(hào)同學(xué)的表現(xiàn),教師關(guān)注會(huì)使他們獲得自信,獲得成功后的喜悅,學(xué)習(xí)也自然有動(dòng)力。舉個(gè)我們班的例子:上《認(rèn)識(shí)方程》一課時(shí),因?yàn)檩^簡(jiǎn)單,整節(jié)課我一直在關(guān)注3、4號(hào)同學(xué)的表現(xiàn),給他們更多的機(jī)會(huì)展示,結(jié)果課后我發(fā)現(xiàn)3、4號(hào)同學(xué)的作業(yè)有明顯的進(jìn)步,甚至有個(gè)別4號(hào)同學(xué)比組長(zhǎng)寫的都要好。也就是欣賞、關(guān)注的成果。
以上兩個(gè)問(wèn)題有待我們一起思考,請(qǐng)各位領(lǐng)導(dǎo)、戰(zhàn)友多提寶貴意見(jiàn)!
《解方程》教學(xué)反思范文9
解方程這部分教學(xué)內(nèi)容與老教材相比有很大的差異,尤其是在方程的解法上,利用天平平衡的道理解方程,學(xué)生在理解和運(yùn)用上都有一定的困難,而且本部分教學(xué)很是枯燥無(wú)味,于是我加入了探秘的情節(jié),和本節(jié)課完全吻合。下面就我講授的這節(jié)課做一下反思:
一、本節(jié)課的教學(xué)重點(diǎn)和難點(diǎn)是:
理解“方程的解”、“解方程”兩個(gè)概念;會(huì)運(yùn)用天平平衡的道理解簡(jiǎn)單的方程。在教學(xué)環(huán)節(jié)的設(shè)計(jì)和安排上,盡量為突破教學(xué)重點(diǎn)和難點(diǎn)服務(wù),因此我進(jìn)行了大膽的嘗試,在講解方程的解時(shí),給學(xué)生一個(gè)明確的目的,告訴他們:“解方程就是為了求出“方程的解”而“方程的解”是一個(gè)神奇的數(shù),它能使方程的左右兩邊相等,不信咱們?cè)囈辉嚒!庇纱艘鹆藢W(xué)生的好奇心,通過(guò)練習(xí)讓學(xué)生充分感知“方程的解”的神奇之處。既讓學(xué)生充分理解“方程的解”是一個(gè)數(shù),“解方程”是一個(gè)過(guò)程,同時(shí)又為最后的檢驗(yàn)做好充分的準(zhǔn)備。每一次的解方程我讓孩子們看成是解謎,是尋寶,比一比看誰(shuí)找的是寶石,誰(shuí)找的是石頭,用你自己的方法就可以驗(yàn)證。孩子們做的是津津有味,尋得異常開(kāi)心。在不知不覺(jué)中學(xué)會(huì)了本節(jié)課的知識(shí)。對(duì)于概念的理解也很扎實(shí)。
二、在練習(xí)題的安排上也做了精心的安排:
當(dāng)講授完利用天平平衡的道理解方程后,馬上進(jìn)行了“填空練習(xí)”,這四個(gè)練習(xí)題的安排也是經(jīng)過(guò)精心考慮的:第一個(gè)方程中的數(shù)是整數(shù),與例題相符合,較容易。第二個(gè)方程中的數(shù)變成小數(shù),難度有所提高。第三和第四個(gè)方程,又有所變化,但解方程的'方法是沒(méi)有變的。從課堂的教學(xué)和課后的練習(xí)看,學(xué)生對(duì)解方程掌握的還不錯(cuò)。
本節(jié)課不足之處在于最后留的時(shí)間過(guò)少,檢驗(yàn)的格式?jīng)]有完整的交給孩子們?蓛(nèi)心矛盾:檢驗(yàn)的目的已經(jīng)達(dá)到了,必須要重視其格式嗎?
總體來(lái)說(shuō),喜歡讓孩子們?cè)诳鞓?lè)中學(xué)到知識(shí),喜歡聽(tīng)孩子們說(shuō):“我還想再寫!
《解方程》教學(xué)反思范文10
學(xué)生從五年級(jí)就開(kāi)始接觸簡(jiǎn)易方程,經(jīng)歷一年多的學(xué)習(xí)對(duì)于方程有了一定的認(rèn)識(shí),然而為何要設(shè)單位“1”的量為未知數(shù)這個(gè)問(wèn)題在列方程解決稍復(fù)雜的分?jǐn)?shù)實(shí)際問(wèn)題時(shí)就一直困擾著學(xué)生。列方程解決稍復(fù)雜的百分?jǐn)?shù)實(shí)際問(wèn)題是小學(xué)階段的最后一個(gè)有關(guān)方程學(xué)習(xí)的單元,因此有必要從本質(zhì)上去撥開(kāi)學(xué)生心中為何要設(shè)單位“1”的量為未知數(shù)的那團(tuán)云。正好借助這節(jié)課通過(guò)對(duì)比分析的方法幫助學(xué)生很好的解決這個(gè)困惑。
案例描述:蘇教版數(shù)學(xué)六年級(jí)下冊(cè)教材
教材例5:朝陽(yáng)小學(xué)美術(shù)組有36人,女生人數(shù)是男生人數(shù)的80%。美術(shù)組男生、女生各多少人?
學(xué)生能很快根據(jù)題目條件進(jìn)行相關(guān)的找單位“1”分析數(shù)量關(guān)系的解題前期準(zhǔn)備,經(jīng)歷這這兩步后學(xué)生通過(guò)已有經(jīng)驗(yàn)可以很快確定用方程的策略來(lái)解決這個(gè)問(wèn)題。
在教學(xué)的過(guò)程中,筆者故意提出:這里男生人數(shù)和女生人數(shù)都是未知的,那么你們覺(jué)得怎樣設(shè)未知數(shù)比較合理呢?學(xué)生在底下開(kāi)始異口同聲地回答設(shè)單位“1”的量也就是男生人數(shù)為未知數(shù)比較合理。設(shè)美術(shù)組有男生X人,女生就有80%X人。那么根據(jù)等量關(guān)系式:男人人數(shù)+女生人數(shù)=36學(xué)生很自然地列出方程
X+80%X=36。就在大家十分“得意”的時(shí)候,一個(gè)小男孩發(fā)表了自己不同的意見(jiàn):“也可以把女生人數(shù)設(shè)為X!眲傞_(kāi)始很多同學(xué)覺(jué)得有點(diǎn)不可思議,以前做這類問(wèn)題不都是將男生人數(shù)(單位“1”)設(shè)為未知數(shù)X的嗎?抓住這個(gè)千載難逢的機(jī)會(huì),我就讓他說(shuō)說(shuō)他是怎么想的。他是這么說(shuō)的:設(shè)女生人數(shù)是X人,男生人數(shù)是X÷80%人,根據(jù)等量關(guān)系式:男人人數(shù)+女生人數(shù)=36列出方程:X+X÷80%=36。聽(tīng)完他精彩的發(fā)言,大家恍然大悟,原來(lái)還可以這樣?
仔細(xì)回想這個(gè)聰明男孩的問(wèn)題,原來(lái)數(shù)學(xué)真的需要?jiǎng)幽X。這個(gè)問(wèn)題在學(xué)習(xí)分?jǐn)?shù)除法之前教材是一直在回避的,到了這里我靈機(jī)一動(dòng)將題目改成:教材例5:朝陽(yáng)小學(xué)美術(shù)組有36人,女生人數(shù)是男生人數(shù)的2倍。美術(shù)組男生、女生各多少人?那你覺(jué)得這個(gè)問(wèn)題我們以前是怎么解決的?學(xué)生很自然的想到把一份數(shù)男生人數(shù)設(shè)為X人,女生有2X人,方程:X+2X=36。那如果一定要把女生人數(shù)設(shè)為X人呢?學(xué)生思考了一會(huì)列出:X+X÷2=36,這個(gè)方程沒(méi)有學(xué)習(xí)分?jǐn)?shù)除法之前學(xué)生是沒(méi)有辦法解出來(lái)的,可能這就是教材一直回避的重要原因吧。但是學(xué)生學(xué)習(xí)了分?jǐn)?shù)除法,理解了分?jǐn)?shù)和百分?jǐn)?shù)的意義之后憑借自己的理解列出超乎常規(guī)的方程的`勇氣是值得肯定的。經(jīng)過(guò)這兩個(gè)問(wèn)題的對(duì)比,學(xué)生明白了設(shè)未知量也是很重要的。課上到這里,并不是去推翻學(xué)生已有的經(jīng)驗(yàn),而是讓學(xué)生有這樣一種意識(shí):數(shù)學(xué)很多時(shí)候不是一種硬性規(guī)定,遇到這類問(wèn)題只能設(shè)單位“1”的量為未知數(shù)。于是我順?biāo)浦圩寣W(xué)生比較了這兩個(gè)方程:X+80%X=36、X+X÷80%=36哪一個(gè)解起來(lái)不較容易?學(xué)生通過(guò)計(jì)算終于明白:X+80%X=36方程的優(yōu)越性,于是又回到了:男生人數(shù)和女生人數(shù)都是未知的,那么你們覺(jué)得怎樣設(shè)未知數(shù)比較合理呢?通過(guò)這樣的對(duì)比進(jìn)一步讓學(xué)生體驗(yàn)到了:設(shè)男生人有X人(單位“1”的量為未知數(shù)的)合理性,不僅僅能很快表示出女生80%X人,而且X+80%X=36是學(xué)生熟悉的形如:aX+bX=c(這里a,b,c已知),而X+X÷80%=36這個(gè)方程不是學(xué)生熟悉的類型,是需要學(xué)生根據(jù)除法將它轉(zhuǎn)化為aX+bX=c,這一步轉(zhuǎn)化至關(guān)重要。經(jīng)過(guò)上述的兩次對(duì)比學(xué)生終于明白了:為什么在設(shè)未知量的時(shí)候一般要把單位“1”的量設(shè)為未知數(shù)了。有了這樣的深刻的體驗(yàn),學(xué)生解決這類問(wèn)題就十分自然,心中的困惑可能就會(huì)煙消云散。
【《解方程》教學(xué)反思】相關(guān)文章:
《解方程》教學(xué)反思05-17
解方程的教學(xué)反思11-06
解方程教學(xué)反思02-05
《解方程》的教學(xué)反思04-08
解方程1教學(xué)反思05-18
《解方程二》教學(xué)反思03-28
《解方程》教學(xué)反思15篇05-19
《解方程》教學(xué)反思(15篇)05-19
解方程的教學(xué)反思15篇03-10