3的倍數(shù)特征教學(xué)反思
作為一位優(yōu)秀的老師,我們要有一流的課堂教學(xué)能力,教學(xué)的心得體會可以總結(jié)在教學(xué)反思中,來參考自己需要的教學(xué)反思吧!下面是小編精心整理的3的倍數(shù)特征教學(xué)反思,供大家參考借鑒,希望可以幫助到有需要的朋友。
3的倍數(shù)特征教學(xué)反思1
《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過2.5倍數(shù)特征之后的又一內(nèi)容,因為2.5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——動手試驗的過程中,概括歸納出了3的倍數(shù)特征。
我從學(xué)生的已有認知出發(fā),引導(dǎo)學(xué)生先進行合理的猜想,進而引發(fā)學(xué)生從不同的角度驗證自己的猜想,通過驗證,學(xué)生自我否定了自己的猜想。此時學(xué)生處于“不憤不啟”的最佳的學(xué)習(xí)狀態(tài),他們迫切想知道3的倍數(shù)的特征究竟是什么?這樣來調(diào)動學(xué)生學(xué)習(xí)的欲望,增強學(xué)生主動探究意識,有利于后面的探究學(xué)習(xí)。他們還認為在我們實際生活中,當你解決一個新問題時,一般沒有人告訴你解決這個問題會碰到什么困難。你只有碰到問題后,在解決問題的過程中方才清楚還需要哪些知識,然后,你要在原來的知識庫中去提取并靈活地應(yīng)用原有的知識。
新課堂呼喚“自主、合作、探究”,而真探究必然伴隨大量差錯的生成,學(xué)生總會出現(xiàn)各種各樣的'錯誤,我們的課堂教學(xué)不應(yīng)該有意識地去避免學(xué)生犯錯誤。因為課堂是學(xué)生出錯的地方,出錯是學(xué)生的權(quán)利,學(xué)生的錯誤是勞動的成果,關(guān)鍵是要看我們教師如何看待學(xué)生的錯誤,有個教育專家說得好:“課堂上的錯誤是教學(xué)的巨大財富”。因此,我們教師在課堂中要有沉著冷靜的心理、海納百川的境界和從容應(yīng)變的機智,給學(xué)生一個出錯的機會和權(quán)利。
3的倍數(shù)特征教學(xué)反思2
《3 的倍數(shù)和特征》一課是在學(xué)生自主探究2、5的倍數(shù)的特征的基礎(chǔ)上進一步學(xué)習(xí),我從學(xué)生的已有基礎(chǔ)出發(fā),把復(fù)習(xí)和導(dǎo)入有機結(jié)合起來,通過2、5的倍數(shù)特征的復(fù)習(xí),設(shè)置了“陷阱”,引導(dǎo)學(xué)生進行猜想3的倍數(shù)的特征可能是什么,從而引發(fā)認知沖突,激發(fā)學(xué)生的求知欲望,經(jīng)歷新知的產(chǎn)生過程。
一、引發(fā)猜想,產(chǎn)生沖突。
前一課時,學(xué)生在發(fā)現(xiàn)2、5的倍數(shù)特征時,都是從個位上研究起的,所以在復(fù)習(xí)舊知時,我也特意強調(diào)了這一點。接下來我引導(dǎo)學(xué)生猜想3 的倍數(shù)特征是什么時,不少學(xué)生知識遷移,提出:個位上是3、6、9的數(shù)應(yīng)該是3 的倍數(shù);3 的倍數(shù)都是奇數(shù)。提出猜想,當然需要驗證,很快就有學(xué)生在觀察百數(shù)表后提出問題:個位上是3、6、9的數(shù)只是有些是3的位數(shù),有些不是3的倍數(shù);有些偶數(shù)也是3的倍數(shù),而有些奇數(shù)卻不是3 的倍數(shù)。學(xué)生的第一猜想被自己否決了。既然沒有這么明顯的特征,那么在百數(shù)表里找出3的倍數(shù),不少學(xué)生就開始了繁雜的計算,這個環(huán)節(jié)我給了他們時間慢慢去算,用意在于體會這種計算的不方便,從而去想有沒有更好的方法去判斷一個數(shù)是否是3 的倍數(shù)。
二、自主探究,建構(gòu)特征
找3 的倍數(shù)的特征是本節(jié)課的難點,我處理這個難點時力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動的組織者、指導(dǎo)者、參與者。整節(jié)課中,始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索并掌握找一個3的倍數(shù)的特征的方法,引導(dǎo)學(xué)生在充分的動口、動手、動腦中自主獲取知識。
在完成100以內(nèi)的數(shù)表中找出所有3 的倍數(shù)后,我引導(dǎo)學(xué)生觀察發(fā)現(xiàn)3的倍數(shù)的個位可以是0~9中任何一個數(shù)字,要判斷一個數(shù)是不是3的倍數(shù)不能和判斷2、5的倍數(shù)一樣只看個位,打破了學(xué)生的認知平衡,然后我提出到底什么樣的數(shù)才是3的倍數(shù)這一問題。這個問題的解決需要借助計數(shù)器,于是我給學(xué)生準備了簡易計數(shù)器,讓學(xué)生多次撥數(shù)后,觀察算珠的個數(shù)有什么共同的特點。反應(yīng)比較快的學(xué)生就有了發(fā)現(xiàn):所用的算珠個數(shù)都是3 的倍數(shù)。在學(xué)生提出這個猜想后,全班學(xué)生再一次進行驗證第二個猜想,這個驗證也是在突破難點,學(xué)生在驗證中掌握難點。同時,我也讓學(xué)生對比了之前所用的方法,體驗這個新方法的快捷與簡便,讓學(xué)生的印象更深刻。這個教學(xué)環(huán)節(jié)在教師的引導(dǎo)下克服困難,解決了力所能及的問題,達到了新的'平衡,開發(fā)了學(xué)生的創(chuàng)新潛能。
在教學(xué)過程中讓學(xué)生自主探索,雖然用了很多時間,但我認為學(xué)生探索的比較充分,學(xué)生的收獲會更多。
三、鞏固內(nèi)化,拓展提高。
在上述教學(xué)過程中,雖然每個同學(xué)只操作了一兩次,但是通過學(xué)生之間的合作交流,在教師的引導(dǎo)下,學(xué)生經(jīng)歷了一個典型的通過不完全 歸納的方法得出規(guī)律的過程。學(xué)生在這一過程中的體驗,無論是方法層面,還是思想層面均將對后繼的學(xué)習(xí)產(chǎn)生深刻的影響。
在初步感知3 的倍數(shù)的特征后,我提出了問題:一個數(shù),在計數(shù)器上撥出它,所用數(shù)珠的顆數(shù)是3的倍數(shù),它就是3的倍數(shù),對嗎?你是否認為我們研究出的結(jié)論對所有的數(shù)都適用呢?這兩個問題的提出,意義在于通過“更大的數(shù)”和“任意找”兩方面,使學(xué)生深切體驗了不完全歸納法的這一要義,同時也培養(yǎng)了學(xué)生縝密思考問題的意識和習(xí)慣。
3的倍數(shù)特征教學(xué)反思3
《3 的倍數(shù)的特征》本節(jié)課的教學(xué)活動,注重學(xué)生實踐操作,展開探究活動,組織學(xué)生進行交流和探討,注重培養(yǎng)學(xué)生發(fā)現(xiàn)問題,解決問題的能力,讓學(xué)生經(jīng)歷科學(xué)探索的過程,感受數(shù)學(xué)的嚴謹性和數(shù)學(xué)結(jié)論的正確性。我是從教學(xué)環(huán)節(jié)維度進行觀課的,本節(jié)課有五個環(huán)節(jié)包括:一、復(fù)習(xí)舊知,直接導(dǎo)入。二、自主探究,合作驗證。三、總結(jié)提升,共同驗證。四、運用結(jié)論,鞏固訓(xùn)練。五、全課小結(jié),課后延伸。每個環(huán)節(jié)環(huán)環(huán)相扣,設(shè)計合理。下面就說一下自己的想法。
一、以舊帶新,引入新課。
趙老師先復(fù)習(xí)了2、5的倍數(shù)的特征,為這節(jié)課的學(xué)習(xí)打下了基礎(chǔ)。趙老師以學(xué)生原有認知為基礎(chǔ),激發(fā)學(xué)生的探究欲望,利用學(xué)生剛學(xué)完“2、5的倍數(shù)的特征”遷移到“3的'倍數(shù)的特征”的問題中,由此萌發(fā)疑問,激發(fā)強烈的探究欲望,因此學(xué)生很快進入問題情境,猜測、否定、反思、觀察、討論,使得大部分學(xué)生漸漸進入了探究者的角色。
二、親身經(jīng)歷,探索規(guī)律。
本節(jié)課教師努力嘗試構(gòu)建數(shù)學(xué)生態(tài)課堂,讓學(xué)生繼續(xù)利用小棒擺一擺,進而發(fā)現(xiàn)不止是3根、6根小棒能擺出3的倍數(shù),9根也能“只要小棒的根數(shù)是3的倍數(shù),擺出來的數(shù)就是3的倍數(shù)!苯處煂ⅰ皠邮謹[小棒”升級為“腦中撥計數(shù)器”,將“直觀性思維”升華為“理性思維”,通過小組交流、集體驗證,學(xué)生的探索發(fā)現(xiàn)離“3的倍數(shù)的特征”只有咫尺之遙。整節(jié)課讓學(xué)生經(jīng)歷“動手操作——觀察發(fā)現(xiàn)——舉例驗證——歸納總結(jié)”的探究過程,實現(xiàn)課程、師生、知識等多層次的互動。
三、精心選題,鞏固新知。
習(xí)題的設(shè)計力爭在突出重點,突破難點,遵循學(xué)生認知規(guī)律的基礎(chǔ)上,體現(xiàn)基礎(chǔ)性、層次性、靈活性、生活性、趣味性。本節(jié)課教師設(shè)計了3道練習(xí)題。在鞏固練習(xí)部分,第(1)、(2)題是基本題;第(3)題,教師努力拉近數(shù)學(xué)與生活的聯(lián)系。把數(shù)學(xué)和生活有機聯(lián)系起來,使學(xué)生體會到數(shù)學(xué)在現(xiàn)實生活中作用和價值,初步學(xué)會用數(shù)學(xué)的眼光去觀察事物、思考問題,樹立學(xué)好數(shù)學(xué)、用好數(shù)學(xué)的志趣。
四、回顧梳理,舉一反。
在學(xué)生學(xué)習(xí)的過程中注意“學(xué)習(xí)方法”的指導(dǎo),讓學(xué)生感受到掌握方法才能舉一反三,真正做到觸類旁通。最后一個環(huán)節(jié)設(shè)計了讓學(xué)生靜靜的回顧這節(jié)課的學(xué)習(xí)歷程“動手操作——觀察發(fā)現(xiàn)——舉例驗證——歸納總結(jié)”,使其在數(shù)學(xué)思想上做進一步的提升。
3的倍數(shù)特征教學(xué)反思4
《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過2.5倍數(shù)特征之后的又一內(nèi)容,因為2.5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——動手試驗的過程中,概括歸納出了3的倍數(shù)特征。
1、找準知識沖突激發(fā)探索愿望。
找準備知識中沖紛激發(fā)探索,在第一環(huán)節(jié)中我先讓學(xué)生復(fù)習(xí)2.5的倍數(shù)特征并對一些數(shù)據(jù)做出了判斷而后我們“誰來猜測一下3的倍數(shù)特征”激發(fā)學(xué)生探究的愿望。由于學(xué)生剛剛復(fù)習(xí)了2.5倍數(shù)的特征,知道只要看一個數(shù)的個位,因此在學(xué)習(xí)3的倍數(shù)特征時,自然會把“看個位”這一方法遷移過來。但實際上,卻不是這樣,于是新舊知識間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣不反有利于學(xué)生對新知識的掌握,有效的將新知識納入到原有的認知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識和能力。
2、激發(fā)學(xué)習(xí)中的困惑,讓探究走向深入。
找準知識之間的沖突并巧妙激發(fā)出來,這是一節(jié)課的出彩之處,而我從孩子們的學(xué)號為入重點,讓孩子們判斷自己的學(xué)號是否是3的倍數(shù),并再次探究3的倍數(shù)特征,并且發(fā)現(xiàn)3的倍數(shù)和數(shù)字排列順序的有關(guān)系。但和這個數(shù)的個位上的`數(shù)字有關(guān)。使之所探究的問題是漸漸完整而清晰,而后我又組織孩子們用擺小棒的方法來探究和驗證,這種層層遞進環(huán)環(huán)相扣的方法,促使探究活動走向深入,讓學(xué)生獲得更大的發(fā)展。
3、課后反思使之完美。
這節(jié)課結(jié)束后,我感覺最大的缺憾之處,最后點選了的倍數(shù)特征時,應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而老練習(xí)題方面,也應(yīng)形式面多樣化,如用卡片練習(xí)判斷,或通過打手勢的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學(xué)生的發(fā)展始終是教學(xué)的落腳點。我們的教學(xué)應(yīng)著眼于學(xué)生對解決問題方法的感悟,這樣才可獲得可持續(xù)發(fā)展的動力。
3的倍數(shù)特征教學(xué)反思5
3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“個位上的數(shù)字之和”去研究。上課開始先讓學(xué)生通過練習(xí)回顧舊知:2的倍數(shù)與5的倍數(shù)的特征。然后讓學(xué)生猜想:3的倍數(shù)又有什么特征呢?這樣能較好調(diào)動學(xué)生學(xué)習(xí)的積極性。由于受2的倍數(shù)與5的倍數(shù)特征的影響,有些學(xué)生很自然猜測到“個位上是0,3,6,9的數(shù)是3的倍數(shù)”、“各位上的數(shù)字加起來是3,6,9的數(shù)是3的倍數(shù)”等等,學(xué)生能想到這幾點是非常不錯的。
學(xué)生進行猜想后,我并沒有判斷學(xué)生的猜想是否正確,而是出現(xiàn)了百數(shù)表,讓學(xué)生在百數(shù)表中圈出所有的3的倍數(shù),讓學(xué)生從表中發(fā)現(xiàn)3 的倍數(shù)的特征,把自己發(fā)現(xiàn)的在小組間交流。此時,我還是沒有判斷學(xué)生的發(fā)現(xiàn)是否正確,而是讓學(xué)生打開課本自學(xué),從課本中找3的倍數(shù)的特征,當遇到問題解決不了時,我們可以向課本求助。然后問學(xué)生“各位上的數(shù)字的和是3的倍數(shù)是什么意思?請結(jié)合舉例說說。”接下來將數(shù)擴到百以上,通過各種方式舉正反例通過計算來驗證從而得出3的倍數(shù)的特征。最后比較驗證之前的猜想與發(fā)現(xiàn)。當我們向課本找到結(jié)論時,我們也要質(zhì)疑,通過舉例來驗證。鼓勵學(xué)生對知識要敢于質(zhì)疑,敢于通過各種方式去驗證,培養(yǎng)學(xué)生良好的數(shù)學(xué)思維。
在教學(xué)中,我能有效獲取課堂生成資源,同時也注重方法的指導(dǎo)。比如:同桌舉例驗證時,涉及到了“123456”是否是3的倍數(shù),先給予學(xué)生思考的時間,讓后問:還有更加簡便的方法嗎?老師有效引導(dǎo),讓學(xué)生去發(fā)現(xiàn)“去3法”能給我們的判斷帶來很大的方便。還有在方框里填數(shù)等。有較好的教學(xué)機智與課堂駕馭能力,如:在百數(shù)表圈3的倍數(shù)時,我的`課件中有個數(shù)“99”忘記沒有圈好,學(xué)生發(fā)現(xiàn)了這問題。在這里,我是表揚了發(fā)現(xiàn)此問題的學(xué)生,老師故意說:我是特意沒有圈的,看我們的學(xué)生觀察是否仔細,考慮問題是否全面……,把原本的錯誤變成良好的教學(xué)資源。練習(xí)的設(shè)計業(yè)很有層次與梯度,聯(lián)系生活實際。
本節(jié)課也有很多不足的地方:百數(shù)表中的數(shù)據(jù)太多,部分學(xué)生的發(fā)現(xiàn)是亂七八糟的;在舉例驗證的過程中,學(xué)生的計算還不夠,學(xué)生親自從算中去體會更好;總結(jié)不太及時,從及時總結(jié)中提煉、提升會更好。
3的倍數(shù)特征教學(xué)反思6
站在跳板上學(xué)習(xí)數(shù)學(xué)——3的倍數(shù)的特征教學(xué)反思
《3的倍數(shù)的特征》看似一節(jié)知識簡單的課,但從教學(xué)實際來看,是我想得過于簡單了,教師注重的不應(yīng)該僅僅是對知識的掌握,更應(yīng)該使學(xué)生站在跳板上學(xué)習(xí)數(shù)學(xué),關(guān)注數(shù)學(xué)思維的發(fā)展 。
“3的倍數(shù)的特征”屬于數(shù)論的范疇,離學(xué)生的生活較遠,有一定的難度。而2、5的倍數(shù)的特征是學(xué)生學(xué)習(xí)這一課的基礎(chǔ)。所以,在教學(xué)“3的倍數(shù)的特征”時,我首先以學(xué)生原有認知為基礎(chǔ),激發(fā)學(xué)生的探究欲望,利用學(xué)生剛學(xué)完“2、5的倍數(shù)的特征”產(chǎn)生的負遷移,直接拋出問題,激活了學(xué)生的原有認知,學(xué)生自然而然地會將“2、5的倍數(shù)的特征”遷移到“3的倍數(shù)的特征”的問題中,由此產(chǎn)生認知沖突,萌發(fā)疑問,激發(fā)強烈的探究欲望,因此學(xué)生很快進入問題情境,猜測、否定、反思、觀察、討論,使得大部分學(xué)生漸漸進入了探究者的角色。但針對這樣的環(huán)節(jié),也有老師提出反對意見,他們認為教師在教學(xué)中不僅要注重知識的正遷移,還要防止負遷移的產(chǎn)生,要能正確地預(yù)見學(xué)生學(xué)習(xí)中可能出現(xiàn)的錯誤,采取適當措施,防患于未然,達到所謂“防微杜漸”的目的;他們滿足于學(xué)生的一路凱歌,陶醉于學(xué)生的盡善盡美,視學(xué)生的差錯為洪水猛獸。但是課堂就是學(xué)生出錯的地方,出錯是學(xué)生的權(quán)利,學(xué)生的錯誤是勞動的成果,關(guān)鍵是要看我們教師如何看待學(xué)生的錯誤,有個教育專家說得好:“課堂上的錯誤是教學(xué)的巨大財富”。正式因為如此,我們的新課堂也呼喚“自主、合作、探究”,而真探究必然伴隨大量差錯的生成,學(xué)生總會出現(xiàn)各種各樣的錯誤,我們的課堂教學(xué)不應(yīng)該有意識地去避免學(xué)生犯錯誤。因此,我們教師在課堂中要有沉著冷靜的心理、海納百川的境界和從容應(yīng)變的機智,給學(xué)生一個出錯的機會和權(quán)利。
其次,看一個數(shù)是不是2、5的`倍數(shù),只需看這個數(shù)的個位。個位是0、2、4、6、8的數(shù)就是2的倍數(shù),個位是0、5的數(shù)就是5的倍數(shù)。而3的倍數(shù)特征則不然,一個數(shù)是不是3的倍數(shù),不能只看個位,而要看它所有所有數(shù)位上的數(shù)的和是不是3的倍數(shù)。在教學(xué)中,我和大多數(shù)的教師一樣,更多的是關(guān)注兩者的不同,注重讓學(xué)生對兩種特征進行區(qū)分,因此,教學(xué)中往往刻意對比強化,凸顯這種差異。但這樣的處理很明顯在數(shù)論的角度上割裂了兩者的共同點。實際上教師在引導(dǎo)學(xué)生發(fā)現(xiàn)3的倍數(shù)的獨特特征的同時,也應(yīng)該注意引導(dǎo)學(xué)生歸納2、3、5倍數(shù)特征的共同點。別小看這寥寥數(shù)言的引導(dǎo),實質(zhì)它蘊藏著深意。因為從數(shù)論角度講一個數(shù)能否被2、3、5乃至被其它數(shù)整除,其研究的理論基礎(chǔ)是一樣的:即如果各個數(shù)位上的數(shù)被某數(shù)除,所得的余數(shù)的和能夠被某數(shù)整除,那么這個數(shù)也一定能被某數(shù)整除。當然,小學(xué)生由于知識和思維特點的限制,還不可能從數(shù)論的高度去建構(gòu)與理解。但是,這并不意味著教師不可以作相應(yīng)的滲透。事實上,正是由于有了教師看似無心實則有意的點撥:“其實3的倍數(shù)特征與2、5的倍數(shù)特征其實有一點還是很像的,不知同學(xué)們注意到?jīng)]有?”學(xué)生才可能從2、3、5倍數(shù)特征孤立、割裂、甚至是相互對立的表象中跳離出來,朦朧地感受到這三者之間的聯(lián)系:2、3、5倍數(shù)特征可以看作是一樣的,都是看它是不是誰的倍數(shù),只不過判斷一個數(shù)是不是2、5的倍數(shù),只需看這個數(shù)的個位是不是2、5的倍數(shù),而判斷一個數(shù)是不是3的倍數(shù)就要看它所有數(shù)位的和是不是3的倍數(shù)。
3的倍數(shù)特征教學(xué)反思7
《3的倍數(shù)的特征》是五年級下冊數(shù)學(xué)第二單元“因數(shù)與倍數(shù)”中的一個知識點,是在學(xué)生已經(jīng)認識倍數(shù)和因數(shù)、2和5倍數(shù)的特征的基礎(chǔ)上進行教學(xué)的。由于2、5的倍數(shù)的特征從數(shù)的表面的特點就可以很容易看出——根據(jù)個位數(shù)的特點就可以判斷出來。但是3的倍數(shù)的特征卻不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。
因而在《3的倍數(shù)的特征》的開始,我先復(fù)習(xí)了2、5的倍數(shù)的特征,然后學(xué)生猜一猜什么樣的數(shù)是3的倍數(shù),學(xué)生自然而然地會將“2.5的'倍數(shù)的特征”遷移到“3的倍數(shù)特征的問題中,得出:個位上是3、6、9的數(shù)是3的倍數(shù),后被學(xué)生補充到“個位上是0—9的任何一個數(shù)字都有可能是3的倍數(shù),”其特征不明顯,也就是說3的倍數(shù)和一個數(shù)的個位數(shù)沒有關(guān)系,因此要從另外的角度來觀察和思考。在問題情境中讓學(xué)生產(chǎn)生認知沖突產(chǎn)生疑問,激發(fā)強烈的探究欲望。接著提供給每位學(xué)生一張百數(shù)表,讓他們?nèi)Τ鏊?的倍數(shù),拋出問題:把3的倍數(shù)的各位上的數(shù)相加,看看你有什么發(fā)現(xiàn),引導(dǎo)學(xué)生換角度思考3的倍數(shù)特征。接下來,經(jīng)過進一步提示,引導(dǎo)學(xué)生觀察各位上數(shù)的和,發(fā)現(xiàn)各位上的和是3的倍數(shù)。于是,形成新的猜想:一個數(shù)如果是3的倍數(shù),那么它各位上數(shù)的和也是3的倍數(shù)。
為了驗證這一猜想,我補充了一些其他的數(shù),如49×3=147,166×3=498等,使學(xué)生進一步確認這一結(jié)論的正確性。還可以任意寫一個數(shù),利用這一結(jié)論來驗證,如3697,3+6+9+7=25,25不是3的倍數(shù),而3697÷3也不能得到整數(shù)商,因此,它不是3的倍數(shù)。通過這樣的方式也使學(xué)生認識到:找出某個規(guī)律后,還要找出一些正面的、反面的例子進行檢驗,看是不是普遍適用。
為了使學(xué)生更好地掌握3的倍數(shù)的特征,進行課堂練習(xí)時,我還把一些數(shù)各個數(shù)位上的數(shù)經(jīng)過不同的排列,再讓學(xué)生判斷,以加深對“各位上數(shù)的和是3的倍數(shù)”的理解。如完成“做一做”第1題時,學(xué)生判斷完45是3的倍數(shù)后,教師可以再讓學(xué)生判斷一下54是不是3的倍數(shù)。
利用2、5、3的倍數(shù)的特征來判斷一個數(shù)是不是2、5或3的倍數(shù),其方法是比較容易掌握的,但要形成較好的數(shù)感,達到熟練判斷的程度,也不是一、兩節(jié)課所能解決的,還需要進行較多的練習(xí)進行鞏固。
這節(jié)課結(jié)束后,我感到自主學(xué)習(xí)和合作探究是這節(jié)課中最重要的兩種學(xué)習(xí)方式,學(xué)生通過自主選擇研究內(nèi)容,舉例驗證等獨立思考和小組討論,相互質(zhì)疑等合作探究活動,獲得了數(shù)學(xué)知識。學(xué)生的學(xué)習(xí)能動性和潛在能力得到了激發(fā)。在自主探索的過程中,學(xué)生體驗到了學(xué)習(xí)成功的愉悅,同時也促進了自身的發(fā)展。但最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時,應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習(xí)題方面,也應(yīng)形式面多樣化。
3的倍數(shù)特征教學(xué)反思8
《3的倍數(shù)的特征》的教學(xué)是五年級數(shù)學(xué)上冊第三單元“因數(shù)與倍數(shù)”中一個重要知識點,是學(xué)生在學(xué)習(xí)了2和5的倍數(shù)特征之后的新內(nèi)容。
3的倍數(shù)的特征與2和5的倍數(shù)的特征有很大差別,2和5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我在本節(jié)課設(shè)計理念上,突出以學(xué)生為主體,教師為主導(dǎo),方法為主線的原則,從現(xiàn)象到本質(zhì),從質(zhì)疑到解疑。當然本節(jié)課也存在很多問題,下面我進行做幾點反思。
1、瞄準目標,把握關(guān)鍵
在導(dǎo)入環(huán)節(jié),我通過復(fù)習(xí)舊知識進行“熱身”。由于學(xué)生已經(jīng)掌握了2和5倍數(shù)的特征,知道只要看一個數(shù)的個位就能判斷一個數(shù)是不是2或5的倍數(shù),因此在學(xué)習(xí)3的倍數(shù)特征時,自然會把“看個位”這一方法遷移過來,盡管是負遷移。實際上,鮮明的沖突讓學(xué)生發(fā)現(xiàn)卻不是這樣,于是新舊知識間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣有利于學(xué)生對新知識的掌握,有效的將新知識納入到原有的認知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識和能力。
2、經(jīng)歷過程,授之以漁
猜想3的倍數(shù)特征是基礎(chǔ),在學(xué)生得出猜想后,我便引導(dǎo)學(xué)生找出百數(shù)表中3的倍數(shù)去驗證,并在驗證中推翻了剛才的猜想。驗證也是有技巧的,30以內(nèi)即可發(fā)現(xiàn)3的倍數(shù)中,個位上可能是10個數(shù)字中的任何一個,之前的判斷已經(jīng)站不住腳。之后繼續(xù)探究,在100以內(nèi),基本可以發(fā)現(xiàn)規(guī)律,但為了嚴謹,必須跳出百數(shù)表,在100以上的數(shù)中去驗證這個規(guī)律。最后,引導(dǎo)學(xué)生理解這個結(jié)論背后的原理,為什么它的規(guī)律和之前的規(guī)律不一樣?這樣一來,學(xué)生不僅學(xué)會本節(jié)課知識,更掌握了科學(xué)的探究方法。
3、追求本真,知其所以然
本節(jié)課的目標定位上,我考慮到學(xué)生的.已有認知基礎(chǔ),我決定引導(dǎo)學(xué)生探索3的倍數(shù)的特征背后的道理。這一嘗試建立在我對學(xué)生學(xué)情把握的基礎(chǔ)上,因為3的倍數(shù)的特征的結(jié)論一但得出,運用起來沒有難度,后面的練習(xí)往往成了“休閑時間”,而進一步提升探索難度,無疑是開發(fā)思維的良好契機。我運用數(shù)形結(jié)合的方法逐步深入,最后還是把話語權(quán)留給學(xué)生,這樣就給予不同學(xué)生各自適應(yīng)的個性化學(xué)習(xí)方略,真正做到了讓每位同學(xué)在數(shù)學(xué)上都得到發(fā)展。
3的倍數(shù)特征教學(xué)反思9
3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“各位上數(shù)的和”去研究。上課開始先讓學(xué)生回顧舊知:2的倍數(shù)和5的倍數(shù)有什么特征?學(xué)生們發(fā)現(xiàn)都只要看一個數(shù)個位上的數(shù)就行了,于是很順利地設(shè)下了陷阱:“同學(xué)們,那猜猜看3的倍數(shù)有什么特征呢?猜測是一種常用的數(shù)學(xué)思考方法,讓學(xué)生猜測3的倍數(shù)有什么特征,能較好地調(diào)動學(xué)生的學(xué)習(xí)積極性。由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學(xué)生很自然猜測到“個位上是0,3,6,9的數(shù)一定是3的倍數(shù)”,還有學(xué)生猜測“個位上的數(shù)字加起來是3,6,9一定是3的倍數(shù)”,能想到這點應(yīng)該說是了不起的。本課到這里都很順利,因為完全在我的預(yù)設(shè)之中。
下面進入驗證環(huán)節(jié),先讓學(xué)生判斷自己的學(xué)號是不是3的倍數(shù),再在這些學(xué)號中挑出個位上是0,3,6,9的數(shù),通過交流,學(xué)生發(fā)現(xiàn)這些數(shù)不一定是3的倍數(shù)。學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個位上,那3的倍數(shù)究竟與什么有關(guān)系呢?于是進入到動手操作環(huán)節(jié)。在此基礎(chǔ)上,抽象成各位上數(shù)的和,是理解3的倍數(shù)特征的.關(guān)鍵。
“試一試”是數(shù)學(xué)的第三步,如果一個數(shù)不是3的倍數(shù),那么這個數(shù)各位數(shù)的和不是3的倍數(shù),利用反例進一步證實3的倍數(shù)的特征,體現(xiàn)了數(shù)學(xué)的嚴謹性和數(shù)學(xué)結(jié)論的確定性。隨后設(shè)計了一系列習(xí)題,使學(xué)生得到鞏固提高。
3的倍數(shù)特征教學(xué)反思10
2、3、5倍數(shù)的特征我設(shè)計的是一節(jié)課,但上完這節(jié)課上完后,給我最大的感受,學(xué)生對2、5的倍數(shù)的特征不難理解,對偶數(shù)和奇數(shù)的概念也容易掌握,但我由于對教材的把握不夠,時間用到2、5倍數(shù)上的`較多。以至于對3的倍數(shù)特征探究不到位。
好的開始等于成功了一半。課伊始,我設(shè)計了搶“30”的游戲,目的是讓學(xué)生從中找到3的倍數(shù),但我發(fā)現(xiàn)這個游戲沒讓學(xué)生部明白要求沒有能提高學(xué)生的興趣。意義不到。數(shù)學(xué)學(xué)習(xí)過程中應(yīng)該是觀察、發(fā)現(xiàn)、驗證、結(jié)論等探索性與挑戰(zhàn)性活動。首先讓學(xué)生獨圈出寫出100以內(nèi)2、5的倍數(shù),獨立觀察,看看你有什么發(fā)現(xiàn)?學(xué)生很容易發(fā)現(xiàn)他們的特征,而這只是猜測,結(jié)論還需要進一步的驗證。但我對這部分的處理太過于復(fù)雜零碎。以至于用的時間過多。比如說2、5倍數(shù)與其他數(shù)位的關(guān)系,著就不是本節(jié)課的重點。
小組合作,發(fā)揮團體的作用,動手實踐、合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。我覺得我們班小組小組合作還有很多部足的地方,比如說學(xué)生的之一能力傾聽能等等還需進一步訓(xùn)練。
3的倍數(shù)特征教學(xué)反思11
今天我教學(xué)了3的倍數(shù)的特征,我首先復(fù)習(xí)2、5的倍數(shù)的特征,然后我出示了幾個不同的四位數(shù),問生:誰能很快判斷出哪些是3的倍數(shù)?想知道有什么竅門嗎?這們引入課題很順當,學(xué)生也很有興趣。下面,我先讓學(xué)生寫出50以內(nèi)3的.倍數(shù),再觀察:3的倍數(shù)有什么特點?學(xué)生一時很難發(fā)現(xiàn),仍從個位上的數(shù)去觀察,但馬上被其他同學(xué)否定,當時我心里有點擔(dān)心怎么看不來呢?,我啟發(fā)學(xué)生再看看個位和十位上的數(shù),通過交流后,在部分學(xué)生馬上發(fā)現(xiàn)把每個數(shù)的數(shù)字加起來的和除以3都是正好除的,我讓學(xué)生用這個發(fā)現(xiàn)對書上第76頁的表格100以內(nèi)的數(shù)進行驗證一下,學(xué)生驗證后我又讓學(xué)生從100以外的數(shù)來驗證。從而得出了3的倍數(shù)的特征。再通過用1、2、6可以寫成哪些三位數(shù)?這些三位數(shù)是3的倍數(shù)嗎?由此有什么發(fā)現(xiàn)?讓學(xué)生進一步明白3的倍數(shù)跟數(shù)字的位置沒有關(guān)系,只跟各位上數(shù)的和有關(guān)系。這樣學(xué)生在完成想想做做第5題時學(xué)生思考時就不會漏寫了。最后,通過后面的練習(xí),我覺得在教學(xué)某些知識時,最好老師不要輕易下結(jié)論,只有讓他們自己在反復(fù)實踐中自己得出結(jié)論,才能牢固地掌握知識。
3的倍數(shù)特征教學(xué)反思12
心理學(xué)原理表明,新異的刺激可以引起學(xué)生的注意和興趣。在教學(xué)中,根據(jù)不同的教材和要求,采取不同的教學(xué)方法,能夠引起學(xué)生學(xué)習(xí)的興趣,有利于創(chuàng)設(shè)良好的課堂氣氛。
教學(xué)3的倍數(shù)特征這一課時,教師組織學(xué)生進行下列鞏固練習(xí):
下列數(shù)中3的倍數(shù)有:()
1435451003328767488
學(xué)生利用3的倍數(shù)的特征一下子就回答了上面的問題,得到了老師的肯定。這時我接著說:“我們來一場老師、學(xué)生打擂臺怎么樣?看誰說的3的倍數(shù)的數(shù)最多,我們看誰能考倒老師!边@時同學(xué)們興趣盎然,紛紛出題來考老師。
生:42
師:111
生:78
師:57
生:81
師:20xx
生:6891
…………
這時師故意出錯:369041
學(xué)生馬上發(fā)現(xiàn)了這個數(shù)不是3的倍數(shù),師問:“你能不能改一改其中的某個數(shù)字使它成為3的倍數(shù)!
生:“可以將1改為2!
生:“可以將4改為5!
生:“可以將1改為5!
生:“可以將1改為8!
生:“可以將4改為2”
生:“可以將4改為8”
學(xué)生回答完后,我及時提問:“你們?yōu)槭裁床桓钠渲械?、6、9和0呢?”學(xué)生通過思考回答:“因為0、6、3、9每一個數(shù)都是3的倍數(shù),所以只要改4和1這兩個數(shù)就行了!边@時我及時指出:“判斷一個數(shù)是不是3的倍數(shù)可以用篩選法來判斷,在各數(shù)位的數(shù)字中先篩去3的倍數(shù)或和為3的倍數(shù)的數(shù)字,若余下的數(shù)字之和是3的.倍數(shù),原數(shù)就是3的倍數(shù),否則就不是!边@時我逐漸地出示下列這組數(shù)要求學(xué)生馬上判斷是否3的倍數(shù)。
56
561
5617
56178
561784
5617849
…………
這個鞏固練習(xí),有效地調(diào)動了學(xué)生的積極性,不斷激起學(xué)生認知的內(nèi)驅(qū)力,使學(xué)生在探索的過程中,主動學(xué)習(xí)、主動探索,帶來了內(nèi)心的滿足感。
3的倍數(shù)特征教學(xué)反思13
《3的倍數(shù)的特征》的教學(xué)是在第一次教學(xué)之后,學(xué)校組織縣級教學(xué)能手選撥賽時候第二次上,可以說是“一課兩上”。我在第二次備課時完全從另一個角度來處理教材,收獲頗豐。下面我就本節(jié)課前后兩次上課反思如下:
第一次上課我是讓學(xué)生圈出100以內(nèi)3的倍數(shù),去觀察3的倍數(shù)的特征,由此總結(jié)出3的倍數(shù)的.特征,然后實際應(yīng)用,鞏固練習(xí)。效果一般。而第二次上課時我是這樣做的:使學(xué)生在原有認知的基礎(chǔ)上產(chǎn)生認知沖突,在學(xué)習(xí)2、5倍數(shù)特征的基礎(chǔ)上,讓學(xué)生猜測是不是3的倍數(shù)的特征也要去看數(shù)的個位呢,進而產(chǎn)生新的探索欲望,讓后在百數(shù)表中圈出3的倍數(shù)的特征,接著借助學(xué)生熟悉的計數(shù)器進行兩個實驗,實驗一:驗證3的倍數(shù)的特診,實驗二:驗證不是3的倍數(shù)的的數(shù)的特征。最后實踐應(yīng)用,課堂檢測。
整個教學(xué)過程突出了對學(xué)生“提出問題—探索問題—解決問題”的能力培養(yǎng),學(xué)生能在猜想、操作、驗證、交流、反思、歸納的數(shù)學(xué)活動中,獲得較為豐富的數(shù)學(xué)經(jīng)驗,也有助于創(chuàng)造性的培養(yǎng)。這就要求我們教師首先要具有創(chuàng)造精神,注重設(shè)計寬松和諧民主的教學(xué)氛圍,尊重學(xué)生,抓住一切可以利用的機會,激發(fā)學(xué)生的創(chuàng)新欲望,學(xué)生的創(chuàng)造意識才能得以培養(yǎng),個性才能充分發(fā)展。
反思這節(jié)課的不足我覺得在每個環(huán)節(jié)的過渡上要做的更加自然、一氣呵成會更好。由于本節(jié)課按照賽教要求只有30分鐘,時間的把握做的還不夠恰到好處?傊虩o定法,學(xué)海無涯,需要我不斷的學(xué)習(xí)和實踐,不斷提高自身素質(zhì)和專業(yè)水平,大力提高教學(xué)質(zhì)量。
3的倍數(shù)特征教學(xué)反思14
《3的倍數(shù)特征》進行了兩次教學(xué)授課,第一次是新授,第二次是錄課重復(fù)授課。下面就本節(jié)課前后兩次上課進行如下反思:第一次上課,采用游戲的方式引入,提前給學(xué)生編號,根據(jù)編號做游戲。由于每個學(xué)生的編號不一樣,所以在做游戲的時候,每個學(xué)生集中注意力,傾聽游戲要求,激發(fā)了學(xué)生的學(xué)習(xí)興趣。設(shè)置游戲的目的是復(fù)習(xí)2或5倍數(shù)的特征,同時,對3的倍數(shù)特征的學(xué)習(xí)產(chǎn)生求知欲。接下來是采用提出猜想,舉出個例否定猜想來過渡。讓學(xué)生充分地認識到依據(jù)2或5的倍數(shù)特征的思想已經(jīng)行不通了,從而開始新的探索。在探索過程中借助“百數(shù)表”,讓學(xué)生獨立地圈出3的倍數(shù),圈完后互相交流3的倍數(shù)的個位有什么特點,再次否定了之前的思維定式。由于個位上沒有特點,所以引導(dǎo)學(xué)生從其他的角度觀察,學(xué)生能想到橫著觀察、豎著觀察,但對于斜著觀察不能很好的發(fā)現(xiàn),所以本節(jié)課中我關(guān)注到學(xué)生的思考困境,引導(dǎo)學(xué)生從斜著觀察的角度思考探索。當學(xué)生斜著觀察時能發(fā)現(xiàn)個位上的數(shù)字依次減1,十位上的數(shù)字依次加1,適時提出“什么是沒有變的?”問題一提出,學(xué)生恍然大悟,發(fā)現(xiàn):個位和十位上的數(shù)的和沒有變!順其自然的知道了3的倍數(shù)具有這樣規(guī)律。經(jīng)過研究每一斜行發(fā)現(xiàn):個位和十位上的數(shù)的和不變,都是3的倍數(shù)。知道了這個規(guī)律后,下面開始延伸這個規(guī)律。一方面:驗證百數(shù)表內(nèi)其他不是3的倍數(shù)是否具有這個規(guī)律?另一方面:比100大的數(shù),三位數(shù)、四位數(shù)、五位數(shù)等是否具有這個規(guī)律?通過兩方面的驗證,再次強調(diào)了這個規(guī)律是普遍存在的`,而這時3的倍數(shù)特征已經(jīng)歸結(jié)為:一個數(shù)各位上的數(shù)的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。知道了3的倍數(shù)特征之后通過練習(xí)鞏固加強,練習(xí)的設(shè)計是三道題,這三道題設(shè)計為不同的層次,第一題是基礎(chǔ)題,第二題是拔高題,第三題是解決問題。通過做題發(fā)現(xiàn)學(xué)生本節(jié)課掌握得不錯。最后,對本節(jié)課的知識進行了延伸,通過出示課本第13頁“你知道嗎?”,讓學(xué)生明白為什么2或5的倍數(shù)特征只看個位就可以了,而3的倍數(shù)特征需要看所有數(shù)位。從而達到學(xué)知識不但要知其然還要知其所以然。整個教學(xué)過程中,學(xué)生能在猜想、操作、驗證、交流、歸納的數(shù)學(xué)活動中獲得豐富的數(shù)學(xué)經(jīng)驗,同時這也有利于學(xué)生創(chuàng)造力的培養(yǎng)。通過本節(jié)課的教學(xué)以及學(xué)生的掌握情況,最終檢測本節(jié)課的目標較好的達成。但反思這節(jié)課的不足,我覺得在每個環(huán)節(jié)上的過渡應(yīng)該更加的自然。另外,在小組討論的時候應(yīng)多關(guān)注學(xué)生的交流,對學(xué)生進行適時地指導(dǎo);诘谝还(jié)課的優(yōu)點和不足,進行了第二次的授課即錄課。由于學(xué)生們已經(jīng)學(xué)習(xí)了過本節(jié)課,所以對于學(xué)生們來說已經(jīng)是舊知識。要把舊知識重新來講,如果照搬之前的授課方式已經(jīng)遠遠不夠了。如何更改,這給我提出來一個新的問題。為此,這節(jié)課我做了適當?shù)恼{(diào)整。本節(jié)課我更多關(guān)注的是數(shù)學(xué)方法和思維方式的培養(yǎng)。其中體現(xiàn)在:
1、學(xué)生在舉例驗證猜想的時候,讓學(xué)生體會反例的作用,如果有一個反例的存在,就說明猜想的結(jié)論是錯誤的。
2、在探索3的倍數(shù)特征時,對于100以內(nèi)3的倍數(shù),應(yīng)如何著手驗證,怎么選取數(shù)來驗證,這一環(huán)節(jié)讓學(xué)生體會:在研究規(guī)律的時候,優(yōu)先選擇數(shù)比較多的這一組,讓學(xué)生明白如果有規(guī)律更容易探索和發(fā)現(xiàn)。
3、在拓展規(guī)律的時候,采用舉了大量的數(shù)據(jù),證明了規(guī)律的普遍存在,讓學(xué)生體會規(guī)律的適用范圍。
4、在做練習(xí)的時候,第2小題,關(guān)注學(xué)生思考問題是否全面,關(guān)注學(xué)生的思考過程。
5、練習(xí)的第3小題,一道解決問題的題目,通過讓學(xué)生讀題、審題、分析題之后,再思考。這一道題學(xué)生展示了多種的做題方法,體現(xiàn)了方法的多樣性,同時也說明學(xué)生的思維是活躍的。本節(jié)課中的不足,練習(xí)中第3題學(xué)生的做法沒有完全的在黑板上板書,另外,本節(jié)課中學(xué)生會超前說出所有問題的答案,使得教師略顯失措,我覺得這是因為我備學(xué)生還不夠。在今后的教學(xué)中,我會改進自己的不足。我將更深入地研究教材、鉆研教法,不斷提高自己的教學(xué)水平,設(shè)計出學(xué)生更能接受和喜歡的課。
3的倍數(shù)特征教學(xué)反思15
《3的倍數(shù)的特征》是人教版義務(wù)教材新課程第八冊的教學(xué)內(nèi)容,對這節(jié)課的教學(xué)設(shè)計,有從2、5的倍數(shù)的特征中引入的、有讓學(xué)生通過擺火柴棒研究的,其中不乏好點子好設(shè)計。但是,大部分老師都要拋出一個問題讓學(xué)生思考:“火柴棒的總根數(shù)跟3的倍數(shù)有什么聯(lián)系?”或者干脆問“3的倍數(shù)和數(shù)位上的數(shù)字的和有什么關(guān)系?”總覺得教師對學(xué)生的引導(dǎo)過于直接,對于五年級的學(xué)生,經(jīng)過這樣的提問,一般都能找到3的倍數(shù)的特征,也能用語言來表述。我認為,我們的關(guān)鍵不但要讓學(xué)生找到3的倍數(shù)的特征,更應(yīng)該引導(dǎo)學(xué)生怎樣去發(fā)現(xiàn)數(shù)位上的數(shù)字的和與3的倍數(shù)之間的關(guān)系。我考慮,能不能在本節(jié)課中運用分類,讓學(xué)生自主探究呢?以下是兩個教學(xué)片段:
教學(xué)片段一:
讓學(xué)生用30秒時間,寫3的倍數(shù),大部分學(xué)生都從小到大寫了25個左右
老師板演了10個:105、111、156、273、300、339、504、918、1527、2442……然后提出探究的任務(wù)。
師:請你給自己寫的3的倍數(shù)分類,看看能不能找到規(guī)律。限時2分鐘。
。ńY(jié)束)學(xué)生回答。
生1:3、6、9;12、15、18、21、24……按位數(shù)分類。(有3人和他一樣分)師:按位數(shù)分類,那么3位數(shù)里哪些是3的倍數(shù)呢:103、208是3的倍數(shù)
嗎?(學(xué)生答不出)
生2:3、6、9、12、15、18、21、24、27、30;
33、36、39、42、45、48、51、54、57、60
63、66……
(有32人和他一樣)
師:你分類的標準是什么?
生2:個位是0——9的都歸為一類,共兩類。
生3:共十類。個位是0的一類,個位是1的一類,個位是2的一類,到個位是9的一類。
師:懂了。3、33、63是一類;6、36、66是一類,共十類。那21253是不是3的倍數(shù),能迅速判斷嗎?(生無語)
師:看來,分類的方法很多。但是,哪一種分類才能幫助我們發(fā)現(xiàn)3的倍數(shù)的特征,是有價值的呢?(學(xué)生陷入沉思)
以上學(xué)生的分類方法,都有不同的標準,從單一分類的角度來看,沒有問題。但是對于尋求3的倍數(shù)的特征,卻沒有意義。大部分學(xué)生是從2、5的倍數(shù)的特征中受到啟示,這是學(xué)生的經(jīng)驗,卻是一種負遷移。課前,我也想到了,那么是不是就一定要先提醒學(xué)生,不要走彎路呢?我認為,負遷移也是一種寶貴的經(jīng)驗,經(jīng)歷過挫折,對知識的理解就會更加深刻,無需刻意回避。
教學(xué)片段二:
師:繼續(xù)觀察這些數(shù),還有其它分類方法嗎?限時5分鐘。(陸續(xù)有學(xué)生舉手,5分鐘后,共有15位學(xué)生舉手,巡視一遍。)
師:誰來介紹自己新的分類方法?
生1:3、21、30;
6、15、24、33、42;
9、18、36、45、63;
12、39、48、57;
……
師:你的分類標準是什么?
生1:第一類,每個數(shù)數(shù)位上的數(shù)字的和是3;第二類,每個數(shù)數(shù)位上的數(shù)字的和是6;第三類,每個數(shù)數(shù)位上的數(shù)字的和是9;第四類,每個數(shù)數(shù)位上的數(shù)字的和是12;以此類推。
師:誰來幫他“以此類推”?
生2:每個數(shù)數(shù)位上的數(shù)字的和是15,也是3的倍數(shù);每個數(shù)數(shù)位上的數(shù)字的和是18,也是3的倍數(shù)。
生3:每個數(shù)數(shù)位上的數(shù)字的和是21,也是3的倍數(shù);每個數(shù)數(shù)位上的數(shù)字的和是24,也是3的倍數(shù)。
師:你能用一句話來表達嗎?
生4:每個數(shù)位上的數(shù)字的和是3、6、9、12、15、18等,這個數(shù)就是3的倍數(shù)。
生5:每個數(shù)位上的數(shù)字的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。
師:很厲害。但是,我們需要驗證。判斷老師剛才寫的`3的倍數(shù)(前5個)105、111、156、273、300。
生4:1加0加5等于6,6是3的倍數(shù),105也是3的倍數(shù)。
生5:1加1加1等于3,3是3的倍數(shù),111也是3的倍數(shù)。
……
。ㄒ粋學(xué)生根據(jù)規(guī)律回答,其他學(xué)生用豎式驗證。)
生6:3的倍數(shù)的特征是找到了,但這樣的分類太亂。我一共分3類:
第一類:每個數(shù)數(shù)位上的數(shù)字的和是3:3、12、21、30;
第二類:每個數(shù)數(shù)位上的數(shù)字的和是6:6、15、24、42、51;
第三類:每個數(shù)數(shù)位上的數(shù)字的和是9:9、18、27、36、45……,
這樣的數(shù)是3的倍數(shù)。
師:那老師的這些數(shù):339、504、918、1527、2442屬于哪一類呢?
生6:339,3加3加9等于15,然后1加5等于6,分到第二類;918,9加1加8等于18,然后1加8等于9,分到第三類;1527分到第二類;2442分到第一類。所有3的倍數(shù)沒有超出這三類的。
師:厲害。ㄗ屍渌麑W(xué)生說了兩個四位數(shù),用他的方法來判斷是不是3的倍數(shù),大概有三十個左右的學(xué)生能用這樣的方法分析。老師又舉了一個反例。)
師:誰能用幾句話來概括?
生6:一個數(shù),每個數(shù)位上的數(shù)字的和是3、6、9,如果和大于9的,數(shù)位上的數(shù)再加,直到出現(xiàn)一位數(shù),如果是3、6、9,那么這個數(shù)就是3的倍數(shù)。
師:真佩服你們!
第二天,有學(xué)生告訴我他發(fā)現(xiàn)了一種更快判斷3的倍數(shù)的方法,不用把數(shù)位上的數(shù)都加起來,比如538,3是3的倍數(shù)就不要管它了,只要5加8加一下,13不是3的倍數(shù),538就不是3的倍數(shù)。我又說了一個五位數(shù)20xx,學(xué)生分析,6是3的倍數(shù),不去管它,2加7是9,9是3的倍數(shù),整個數(shù)就是3的倍數(shù)。
學(xué)生的探究能力如此之強,是我沒想到的,學(xué)生快速判斷3的倍數(shù)的方法,實際上已經(jīng)綜合了很多的知識,盡管不能很明確地用語言來表達,但是,方法是完全正確的,其實這又是一個學(xué)生新的探究的開始。
從本節(jié)課中,我有幾點小小的感悟:
一、教師不要害怕學(xué)生探究的失敗。學(xué)生第一次探究的失敗,完全是正常的,這是他們運用已有的經(jīng)驗,進行探究后的結(jié)果。盡管這種經(jīng)驗的遷移是負作用的,但是從失敗到成功的過程,記憶是深刻的。負遷移在教學(xué)中比比皆是,我們不但不能回避,而且要好好利用,要讓學(xué)生積累對數(shù)學(xué)活動的經(jīng)驗,同時能將“經(jīng)驗材料組織化”。
二、教師要給學(xué)生創(chuàng)造探究的機會。學(xué)生的探究能力其實是老師意想不到的。最后一位學(xué)生對3的倍數(shù)的概括(一個數(shù),每個數(shù)位上的數(shù)字的和是3、6、9,如果和大于9的,數(shù)位上的數(shù)再加,直到出現(xiàn)一位數(shù),如果是3、6、9,那么這個數(shù)就是3的倍數(shù)。),盡管實際的意義不是很大,但是它更具有橫向的關(guān)聯(lián),2的倍數(shù)特征是:個位是0、2、4、6、8的數(shù)是2的倍數(shù);5的倍數(shù)的特征是個位是0或5的數(shù)是5的倍數(shù);蛟S,這種類比聯(lián)想更容易讓學(xué)生理解新的知識,更何況是學(xué)生自己探究出來的。其實很多教學(xué)內(nèi)容我們都可以讓學(xué)生進行探究,關(guān)鍵是教師如何給學(xué)生提供一個探究的載體,一種探究的環(huán)境。
三、教師對學(xué)過的知識要經(jīng)常地進行整合。新教材的特點是有些知識點分得比較散,所以教師要經(jīng)常把學(xué)生學(xué)過的知識,在新知中不知不覺地再應(yīng)用,再鞏固。溫故而知新,在復(fù)習(xí)與鞏固中,學(xué)生會對舊知有更高的認識,更深的理解,也容易排除學(xué)生對新知的畏難思想。同時要經(jīng)常地對各種知識進行串聯(lián),編織學(xué)生知識的網(wǎng)絡(luò),使學(xué)生認識到各種知識之間是相互關(guān)聯(lián)相互作用的,以利于學(xué)生解決一些實際問題或綜合性問題。
四、教師要經(jīng)常在教學(xué)中滲透一些數(shù)學(xué)思想。分類是一種數(shù)學(xué)思想,同時也是一種數(shù)學(xué)思維的工具。人教版小學(xué)數(shù)學(xué)第一冊學(xué)生就接觸了分類《整理房間》,第七冊《角的分類》、第八冊《三角形的分類》,讓學(xué)生對分類有了更多的理解。其實在生活中,無處不在的分類:超市貨物的擺放、自己書本的整理、性別之間、班級之間等等。對于分類的標準,分類的原則,學(xué)生在不知不覺中有了感悟。借助分類,有40%的學(xué)生找到了3的倍數(shù)的特征,學(xué)生完全是在觀察、嘗試、驗證的基礎(chǔ)上探究的,是自主的行為研究。在小學(xué)數(shù)學(xué)中,滲透了很多數(shù)學(xué)思想,如集合、對應(yīng)、假設(shè)、比較、類比、轉(zhuǎn)化、分類、統(tǒng)計思想等,在教學(xué)中合理地運用這些數(shù)學(xué)思想,對學(xué)生學(xué)習(xí)數(shù)學(xué)的影響是深遠的,也會讓我們的數(shù)學(xué)探究活動更有意義,更有價值。
【3的倍數(shù)特征教學(xué)反思】相關(guān)文章:
倍數(shù)的特征教學(xué)反思11-16
2、5、3的倍數(shù)的特征教學(xué)反思06-16