欧美三级中文字幕乱码,日本亚洲中文无线码在线观看,91精品视频免费观看,伊人久久综合

        當(dāng)前位置:9136范文網(wǎng)>教育范文>教案>高一數(shù)學(xué)教案

        高一數(shù)學(xué)教案

        時(shí)間:2024-07-14 23:27:32 教案 我要投稿

        高一數(shù)學(xué)教案15篇

          作為一名辛苦耕耘的教育工作者,常常要寫一份優(yōu)秀的教案,編寫教案有利于我們弄通教材內(nèi)容,進(jìn)而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。那么教案應(yīng)該怎么寫才合適呢?以下是小編幫大家整理的高一數(shù)學(xué)教案,歡迎閱讀,希望大家能夠喜歡。

        高一數(shù)學(xué)教案15篇

        高一數(shù)學(xué)教案1

          第二十四教時(shí)

          教材:倍角公式,推導(dǎo)和差化積及積化和差公式

          目的:繼續(xù)復(fù)習(xí)鞏固倍角公式,加強(qiáng)對公式靈活運(yùn)用的訓(xùn)練;同時(shí),讓學(xué)生推導(dǎo)出和差化積和積化和差公式,并對此有所了解。

          過程:

          一、 復(fù)習(xí)倍角公式、半角公式和萬能公式的推導(dǎo)過程:

          例一、 已知 , ,tan = ,tan = ,求2 +

          (《教學(xué)與測試》P115 例三)

          解:

          又∵tan2 0,tan 0 ,

          2 + =

          例二、 已知sin cos = , ,求 和tan的值

          解:∵sin cos =

          化簡得:

          ∵ 即

          二、 積化和差公式的推導(dǎo)

          sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )]

          sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )]

          cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )]

          cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )]

          這套公式稱為三角函數(shù)積化和差公式,熟悉結(jié)構(gòu),不要求記憶,它的優(yōu)點(diǎn)在于將積式化為和差,有利于簡化計(jì)算。(在告知公式前提下)

          例三、 求證:sin3sin3 + cos3cos3 = cos32

          證:左邊 = (sin3sin)sin2 + (cos3cos)cos2

          = (cos4 cos2)sin2 + (cos4 + cos2)cos2

          = cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2

          = cos4cos2 + cos2 = cos2(cos4 + 1)

          = cos22cos22 = cos32 = 右邊

          原式得證

          三、 和差化積公式的`推導(dǎo)

          若令 + = , = ,則 , 代入得:

          這套公式稱為和差化積公式,其特點(diǎn)是同名的正(余)弦才能使用,它與積化和差公式相輔相成,配合使用。

          例四、 已知cos cos = ,sin sin = ,求sin( + )的值

          解:∵cos cos = , ①

          sin sin = , ②

          四、 小結(jié):和差化積,積化和差

          五、 作業(yè):《課課練》P3637 例題推薦 13

          P3839 例題推薦 13

          P40 例題推薦 13

        高一數(shù)學(xué)教案2

          教學(xué)目標(biāo):

          1.進(jìn)一步理解對數(shù)函數(shù)的性質(zhì),能運(yùn)用對數(shù)函數(shù)的相關(guān)性質(zhì)解決對數(shù)型函數(shù)的常見問題.

          2.培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,以及分析推理的能力.

          教學(xué)重點(diǎn):

          對數(shù)函數(shù)性質(zhì)的應(yīng)用.

          教學(xué)難點(diǎn):

          對數(shù)函數(shù)的性質(zhì)向?qū)?shù)型函數(shù)的演變延伸.

          教學(xué)過程:

          一、問題情境

          1.復(fù)習(xí)對數(shù)函數(shù)的性質(zhì).

          2.回答下列問題.

          (1)函數(shù)y=log2x的值域是 ;

          (2)函數(shù)y=log2x(x≥1)的值域是 ;

          (3)函數(shù)y=log2x(0

          3.情境問題.

          函數(shù)y=log2(x2+2x+2)的定義域和值域分別如何求呢?

          二、學(xué)生活動(dòng)

          探究完成情境問題.

          三、數(shù)學(xué)運(yùn)用

          例1 求函數(shù)y=log2(x2+2x+2)的定義域和值域.

          練習(xí):

          (1)已知函數(shù)y=log2x的值域是[-2,3],則x的范圍是________________.

          (2)函數(shù) ,x(0,8]的值域是 .

          (3)函數(shù)y=log (x2-6x+17)的值域 .

          (4)函數(shù) 的`值域是_______________.

          例2 判斷下列函數(shù)的奇偶性:

          (1)f (x)=lg (2)f (x)=ln( -x)

          例3 已知loga 0.75>1,試求實(shí)數(shù)a 取值范圍.

          例4 已知函數(shù)y=loga(1-ax)(a>0,a≠1).

          (1)求函數(shù)的定義域與值域;

          (2)求函數(shù)的單調(diào)區(qū)間.

          練習(xí):

          1.下列函數(shù)(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域?yàn)镽的有 (請寫出所有正確結(jié)論的序號).

          2.函數(shù)y=lg( -1)的圖象關(guān)于 對稱.

          3.已知函數(shù) (a>0,a≠1)的圖象關(guān)于原點(diǎn)對稱,那么實(shí)數(shù)m= .

          4.求函數(shù) ,其中x [ ,9]的值域.

          四、要點(diǎn)歸納與方法小結(jié)

          (1)借助于對數(shù)函數(shù)的性質(zhì)研究對數(shù)型函數(shù)的定義域與值域;

          (2)換元法;

          (3)能畫出較復(fù)雜函數(shù)的圖象,根據(jù)圖象研究函數(shù)的性質(zhì)(數(shù)形結(jié)合).

          五、作業(yè)

          課本P70~71-4,5,10,11.

        高一數(shù)學(xué)教案3

          教學(xué)目標(biāo):

          (1)了解集合的表示方法;

          (2)能正確選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;

          教學(xué)重點(diǎn):掌握集合的表示方法;

          教學(xué)難點(diǎn):選擇恰當(dāng)?shù)谋硎痉椒?

          教學(xué)過程:

          一、復(fù)習(xí)回顧:

          1.集合和元素的定義;元素的三個(gè)特性;元素與集合的關(guān)系;常用的數(shù)集及表示。

          2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分別是什么?有何關(guān)系

          二、新課教學(xué)

          (一).集合的表示方法

          我們可以用自然語言和圖形語言來描述一個(gè)集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

          (1) 列舉法:把集合中的元素一一列舉出來,并用花括號“ ”括起來表示集合的方法叫列舉法。

          如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;

          說明:1.集合中的元素具有無序性,所以用列舉法表示集合時(shí)不必考

          慮元素的順序。

          2.各個(gè)元素之間要用逗號隔開;

          3.元素不能重復(fù);

          4.集合中的元素可以數(shù),點(diǎn),代數(shù)式等;

          5.對于含有較多元素的集合,用列舉法表示時(shí),必須把元素間的規(guī)律顯示清楚后方能用省略號,象自然數(shù)集N用列舉法表示為

          例1.(課本例1)用列舉法表示下列集合:

          (1)小于10的所有自然數(shù)組成的集合;

          (2)方程x2=x的所有實(shí)數(shù)根組成的集合;

          (3)由1到20以內(nèi)的所有質(zhì)數(shù)組成的集合;

          (4)方程組 的解組成的集合。

          思考2:(課本P4的思考題)得出描述法的定義:

          (2)描述法:把集合中的元素的公共屬性描述出來,寫在花括號{ }內(nèi)。

          具體方法:在花括號內(nèi)先寫上表示這個(gè)集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個(gè)集合中元素所具有的共同特征。

          一般格式:

          如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;

          說明:

          1.課本P5最后一段話;

          2.描述法表示集合應(yīng)注意集合的代表元素,如{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}是不同的兩個(gè)集合,只要不引起誤解,集合的代表元素也可省略,例如:{x|整數(shù)},即代表整數(shù)集Z。

          辨析:這里的.{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實(shí)數(shù)集},{R}也是錯(cuò)誤的。

          例2.(課本例2)試分別用列舉法和描述法表示下列集合:

          (1)方程x2—2=0的所有實(shí)數(shù)根組成的集合;

          (2)由大于10小于20的所有整數(shù)組成的集合;

          (3)方程組 的解。

          思考3:(課本P6思考)

          說明:列舉法與描述法各有優(yōu)點(diǎn),應(yīng)該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個(gè)元素時(shí),不宜采用列舉法。

          (二).課堂練習(xí):

          1.課本P6練習(xí)2;

          2.用適當(dāng)?shù)姆椒ū硎炯希捍笥?的所有奇數(shù)

          3.集合A={x| ∈Z,x∈N},則它的元素是 。

          4.已知集合A={x|-3

          歸納小結(jié):

          本節(jié)課從實(shí)例入手,介紹了集合的常用表示方法,包括列舉法、描述法。

          作業(yè)布置:

          1. 習(xí)題1.1,第3.4題;

          2. 課后預(yù)習(xí)集合間的基本關(guān)系.

        高一數(shù)學(xué)教案4

          教學(xué)目標(biāo)

         。1)正確理解充分條件、必要條件和充要條件的概念;

         。2)能正確判斷是充分條件、必要條件還是充要條件;

         。3)培養(yǎng)學(xué)生的邏輯思維能力及歸納總結(jié)能力;

         。4)在充要條件的教學(xué)中,培養(yǎng)等價(jià)轉(zhuǎn)化思想.

          教學(xué)建議

         。ㄒ唬┙滩姆治

          1.知識結(jié)構(gòu)

          首先給出推斷符號“”,并引出的意義,在此基礎(chǔ)上講述了充要條件的初步知識.

          2.重點(diǎn)難點(diǎn)分析

          本節(jié)的重點(diǎn)與難點(diǎn)是關(guān)于充要條件的判斷.

          (1)充分但不必要條件、必要但不充分條件、充要條件、既不充分也不必要條件是重要的數(shù)學(xué)概念,主要用來區(qū)分命題的條件和結(jié)論之間的因果關(guān)系.

          (2)在判斷條件和結(jié)論之間的因果關(guān)系中應(yīng)該:

         、偈紫确智鍡l件是什么,結(jié)論是什么;

         、谌缓髧L試用條件推結(jié)論,再嘗試用結(jié)論推條件.推理方法可以是直接證法、間接證法(即反證法),也可以舉反例說明其不成立;

         、圩詈笤僦赋鰲l件是結(jié)論的什么條件.

         。3)在討論條件和條件的關(guān)系時(shí),要注意:

         、偃,但,則是的充分但不必要條件;

          ②若,但,則是的必要但不充分條件;

         、廴,且,則是的充要條件;

         、苋,且,則是的充要條件;

         、萑,且,則是的既不充分也不必要條件.

          (4)若條件以集合的形式出現(xiàn),結(jié)論以集合的形式出現(xiàn),則借助集合知識,有助于充要條件的理解和判斷.

         、偃,則是的充分條件;

          顯然,要使元素,只需就夠了.類似地還有:

         、谌,則是的必要條件;

         、廴簦瑒t是的充要條件;

          ④若,且,則是的既不必要也不充分條件.

         。5)要證明命題的條件是充要條件,就既要證明原命題成立,又要證明它的逆命題成立.證明原命題即證明條件的充分性,證明逆命題即證明條件的必要性.由于原命題逆否命題,逆命題否命題,當(dāng)我們證明某一命題有困難時(shí),可以證明該命題的逆否命題成立,從而得出原命題成立.

         。ǘ┙谭ńㄗh

          1.學(xué)習(xí)充分條件、必要條件和充要條件知識,要注意與前面有關(guān)邏輯初步知識內(nèi)容相聯(lián)系.充要條件中的,與四種命題中的,要求是一樣的.它們可以是簡單命題,也可以是不能判斷真假的語句,也可以是含有邏輯聯(lián)結(jié)詞或“若則”形式的復(fù)合命題.

          2.由于這節(jié)課概念性、理論性較強(qiáng),一般的教學(xué)使學(xué)生感到枯燥乏味,為此,激發(fā)學(xué)生的學(xué)習(xí)興趣是關(guān)鍵.教學(xué)中始終要注意以學(xué)生為主,讓學(xué)生在自我思考、相互交流中去結(jié)概念“下定義”,去體會(huì)概念的本質(zhì)屬性.

          3.由于“充要條件”與命題的真假、命題的條件與結(jié)論的相互關(guān)系緊密相關(guān),為此,教學(xué)時(shí)可以從判斷命題的真假入手,來分析命題的條件對于結(jié)論來說,是否充分,從而引入“充分條件”的概念,進(jìn)而引入“必要條件”的概念.

          4.教材中對“充分條件”、“必要條件”的定義沒有作過多的解釋說明,為了讓學(xué)生能理解定義的合理性,在教學(xué)過程中,教師可以從一些熟悉的命題的條件與結(jié)論之間的關(guān)系來認(rèn)識“充分條件”的.概念,從互為逆否命題的等價(jià)性來引出“必要條件”的概念.

          教學(xué)設(shè)計(jì)示例

          充要條件

          教學(xué)目標(biāo)

         。1)正確理解充分條件、必要條件和充要條件的概念;

         。2)能正確判斷是充分條件、必要條件還是充要條件;

         。3)培養(yǎng)學(xué)生的邏輯思維能力及歸納總結(jié)能力;

          (4)在充要條件的教學(xué)中,培養(yǎng)等價(jià)轉(zhuǎn)化思想.

          教學(xué)重點(diǎn)難點(diǎn):

          關(guān)于充要條件的判斷

          教學(xué)用具:

          幻燈機(jī)或?qū)嵨锿队皟x

          教學(xué)過程設(shè)計(jì)

          1.復(fù)習(xí)引入

          練習(xí):判斷下列命題是真命題還是假命題(用幻燈投影):

         。1)若,則;

         。2)若,則;

         。3)全等三角形的面積相等;

         。4)對角線互相垂直的四邊形是菱形;

         。5)若,則;

          (6)若方程有兩個(gè)不等的實(shí)數(shù)解,則.

         。▽W(xué)生口答,教師板書.)

         。1)、(3)、(6)是真命題,(2)、(4)、(5)是假命題.

          置疑:對于命題“若,則”,有時(shí)是真命題,有時(shí)是假命題.如何判斷其真假的?

          答:看能不能推出,如果能推出,則原命題是真命題,否則就是假命題.

          對于命題“若,則”,如果由經(jīng)過推理能推出,也就是說,如果成立,那么一定成立.換句話說,只要有條件就能充分地保證結(jié)論的成立,這時(shí)我們稱條件是成立的充分條件,記作.

          2.講授新課

          (板書充分條件的定義.)

          一般地,如果已知,那么我們就說是成立的充分條件.

          提問:請用充分條件來敘述上述(1)、(3)、(6)的條件與結(jié)論之間的關(guān)系.

         。▽W(xué)生口答)

         。1)“,”是“”成立的充分條件;

          (2)“三角形全等”是“三角形面積相等”成立的充分條件;

         。3)“方程的有兩個(gè)不等的實(shí)數(shù)解”是“”成立的充分條件.

          從另一個(gè)角度看,如果成立,那么其逆否命題也成立,即如果沒有,也就沒有,亦即是成立的必須要有的條件,也就是必要條件.

         。ò鍟匾獥l件的定義.)

          提出問題:用“充分條件”和“必要條件”來敘述上述6個(gè)命題.

         。▽W(xué)生口答).

         。1)因?yàn),所以是的充分條件,是的必要條件;

         。2)因?yàn),所以是的必要條件,是的充分條件;

         。3)因?yàn)椤皟扇切稳取薄皟扇切蚊娣e相等”,所以“兩三角形全等”是“兩三角形面積相等”的充分條件,“兩三角形面積相等”是“兩三角形全等”的必要條件;

         。4)因?yàn)椤八倪呅蔚膶蔷互相垂直”“四邊形是菱形”,所以“四邊形的對角線互相垂直”是“四邊形是菱形”的必要條件,“四邊形是菱形”是“四邊形的對角線互相垂直”的充分條件;

         。5)因?yàn),所以是的必要條件,是的充分條件;

         。6)因?yàn)椤胺匠痰挠袃蓚(gè)不等的實(shí)根”“”,而且“方程的有兩個(gè)不等的實(shí)根”“”,所以“方程的有兩個(gè)不等的實(shí)根”是“”充分條件,而且是必要條件.

          總結(jié):如果是的充分條件,又是的必要條件,則稱是的充分必要條件,簡稱充要條件,記作.

          (板書充要條件的定義.)

          3.鞏固新課

          例1(用投影儀投影.)

         。▽W(xué)生活動(dòng),教師引導(dǎo)學(xué)生作出下面回答.)

         、僖?yàn)橛欣頂?shù)一定是實(shí)數(shù),但實(shí)數(shù)不一定是有理數(shù),所以是的充分非必要條件,是的必要非充分條件;

         、谝欢芡瞥,而不一定推出,所以是的充分非必要條件,是的必要非充分條件;

          ③、是奇數(shù),那么一定是偶數(shù);是偶數(shù),、不一定都是奇數(shù)(可能都為偶數(shù)),所以是的充分非必要條件,是的必要非充分條件;

         、鼙硎净,所以是成立的必要非充分條件;

         、萦山患亩x可知且是成立的充要條件;

         、抻芍,所以是成立的充分非必要條件;

         、哂芍,所以是,成立的必要非充分條件;

         、嘁字笆4的倍數(shù)”是“是6的倍數(shù)”成立的既非充分又非必要條件;

         。ㄍㄟ^對上述問題的交流、思辯,在爭論中得到了正確答案,并加深了對充分條件、必要條件的認(rèn)識.)

          例2已知是的充要條件,是的必要條件同時(shí)又是的充分條件,試與的關(guān)系.(投影)

          解:由已知得,

          所以是的充分條件,或是的必要條件.

          4.小結(jié)回授

          今天我們學(xué)習(xí)了充分條件、必要條件和充要條件的概念,并學(xué)會(huì)了判斷條件A是B的什么條件,這為我們今后解決數(shù)學(xué)問題打下了等價(jià)轉(zhuǎn)化的基礎(chǔ).

          課內(nèi)練習(xí):課本(人教版,試驗(yàn)修訂本,第一冊(上))第35頁練習(xí)l、2;第36頁練習(xí)l、2.

          (通過練習(xí),檢查學(xué)生掌握情況,有針對性的進(jìn)行講評.)

          5.課外作業(yè):教材第36頁 習(xí)題1.8 1、2、3.

        高一數(shù)學(xué)教案5

          1.1 集合含義及其表示

          教學(xué)目標(biāo):理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號及術(shù)語。

          教學(xué)過程:

          一、閱讀下列語句:

          1) 全體自然數(shù)0,1,2,3,4,5,

          2) 代數(shù)式 .

          3) 拋物線 上所有的點(diǎn)

          4) 今年本校高一(1)(或(2))班的全體學(xué)生

          5) 本校實(shí)驗(yàn)室的所有天平

          6) 本班級全體高個(gè)子同學(xué)

          7) 著名的科學(xué)家

          上述每組語句所描述的對象是否是確定的?

          二、1)集合:

          2)集合的元素:

          3)集合按元素的.個(gè)數(shù)分,可分為1)__________2)_________

          三、集合中元素的三個(gè)性質(zhì):

          1)___________2)___________3)_____________

          四、元素與集合的關(guān)系:1)____________2)____________

          五、特殊數(shù)集專用記號:

          1)非負(fù)整數(shù)集(或自然數(shù)集)______2)正整數(shù)集_____3)整數(shù)集_______

          4)有理數(shù)集______5)實(shí)數(shù)集_____ 6)空集____

          六、集合的表示方法:

          1)

          2)

          3)

          七、例題講解:

          例1、 中三個(gè)元素可構(gòu)成某一個(gè)三角形的三邊長,那么此三角形一定不是 ( )

          A,直角三角形 B,銳角三角形 C,鈍角三角形 D,等腰三角形

          例2、用適當(dāng)?shù)姆椒ū硎鞠铝屑,然后說出它們是有限集還是無限集?

          1)地球上的四大洋構(gòu)成的集合;

          2)函數(shù) 的全體 值的集合;

          3)函數(shù) 的全體自變量 的集合;

          4)方程組 解的集合;

          5)方程 解的集合;

          6)不等式 的解的集合;

          7)所有大于0且小于10的奇數(shù)組成的集合;

          8)所有正偶數(shù)組成的集合;

          例3、用符號 或 填空:

          1) ______Q ,0_____N, _____Z,0_____

          2) ______ , _____

          3)3_____ ,

          4)設(shè) , , 則

          例4、用列舉法表示下列集合;

          1.

          2.

          3.

          4.

          例5、用描述法表示下列集合

          1.所有被3整除的數(shù)

          2.圖中陰影部分點(diǎn)(含邊界)的坐標(biāo)的集合

          課堂練習(xí):

          例6、設(shè)含有三個(gè)實(shí)數(shù)的集合既可以表示為 ,也可以表示為 ,則 的值等于___________

          例7、已知: ,若 中元素至多只有一個(gè),求 的取值范圍。

          思考題:數(shù)集A滿足:若 ,則 ,證明1):若2 ,則集合中還有另外兩個(gè)元素;2)若 則集合A不可能是單元素集合。

          小結(jié):

          作業(yè) 班級 姓名 學(xué)號

          1. 下列集合中,表示同一個(gè)集合的是 ( )

          A . M= ,N= B. M= ,N=

          C. M= ,N= D. M= ,N=

          2. M= ,X= ,Y= , , .則 ( )

          A . B. C. D.

          3. 方程組 的解集是____________________.

          4. 在(1)難解的題目,(2)方程 在實(shí)數(shù)集內(nèi)的解,(3)直角坐標(biāo)平面內(nèi)第四象限的一些點(diǎn),(4)很多多項(xiàng)式。能夠組成集合的序號是________________.

          5. 設(shè)集合 A= , B= ,

          C= , D= ,E= 。

          其中有限集的個(gè)數(shù)是____________.

          6. 設(shè) ,則集合 中所有元素的和為

          7. 設(shè)x,y,z都是非零實(shí)數(shù),則用列舉法將 所有可能的值組成的集合表示為

          8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= ,

          若A= ,試用列舉法表示集合B=

          9. 把下列集合用另一種方法表示出來:

          (1) (2)

          (3) (4)

          10. 設(shè)a,b為整數(shù),把形如a+b 的一切數(shù)構(gòu)成的集合記為M,設(shè) ,試判斷x+y,x-y,xy是否屬于M,說明理由。

          11. 已知集合A=

          (1) 若A中只有一個(gè)元素,求a的值,并求出這個(gè)元素;

          (2) 若A中至多只有一個(gè)元素,求a的取值集合。

          12.若-3 ,求實(shí)數(shù)a的值。

          【總結(jié)】20xx年已經(jīng)到來,新的一年數(shù)學(xué)網(wǎng)會(huì)為您整理更多更好的文章,希望本文高一數(shù)學(xué)教案:集合含義及其表示能給您帶來幫助!

        高一數(shù)學(xué)教案6

          經(jīng)典例題

          已知關(guān)于 的方程 的實(shí)數(shù)解在區(qū)間 ,求 的取值范圍。

          反思提煉:1.常見的四種指數(shù)方程的一般解法

         。1)方程 的解法:

          (2)方程 的解法:

         。3)方程 的解法:

         。4)方程 的解法:

          2.常見的三種對數(shù)方程的一般解法

         。1)方程 的解法:

         。2)方程 的'解法:

         。3)方程 的解法:

          3.方程與函數(shù)之間的轉(zhuǎn)化。

          4.通過數(shù)形結(jié)合解決方程有無根的問題。

          課后作業(yè):

          1.對正整數(shù)n,設(shè)曲線 在x=2處的切線與軸交點(diǎn)的縱坐標(biāo)為 ,則數(shù)列 的前n項(xiàng)和的公式是

          [答案] 2n+1-2

          [解析] ∵=xn(1-x),∴′=(xn)′(1-x)+(1-x)′xn=nxn-1(1-x)-xn.

          f ′(2)=-n2n-1-2n=(-n-2)2n-1.

          在點(diǎn)x=2處點(diǎn)的縱坐標(biāo)為=-2n.

          ∴切線方程為+2n=(-n-2)2n-1(x-2).

          令x=0得,=(n+1)2n,

          ∴an=(n+1)2n,

          ∴數(shù)列ann+1的前n項(xiàng)和為2(2n-1)2-1=2n+1-2.

          2.在平面直角坐標(biāo)系 中,已知點(diǎn)P是函數(shù) 的圖象上的動(dòng)點(diǎn),該圖象在P處的切線 交軸于點(diǎn)M,過點(diǎn)P作 的垂線交軸于點(diǎn)N,設(shè)線段MN的中點(diǎn)的縱坐標(biāo)為t,則t的最大值是_____________

          解析:設(shè) 則 ,過點(diǎn)P作 的垂線

          ,所以,t在 上單調(diào)增,在 單調(diào)減, 。

        高一數(shù)學(xué)教案7

          學(xué)習(xí)目標(biāo) 1.函數(shù)奇偶性的概念

          2.由函數(shù)圖象研究函數(shù)的奇偶性

          3.函數(shù)奇偶性的判斷

          重點(diǎn):能運(yùn)用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性

          難點(diǎn):理解函數(shù)的奇偶性

          知識梳理:

          1.軸對稱圖形:

          2中心對稱圖形:

          【概念探究】

          1、 畫出函數(shù) ,與 的圖像;并觀察兩個(gè)函數(shù)圖像的對稱性。

          2、 求出 , 時(shí)的函數(shù)值,寫出 , 。

          結(jié)論: 。

          3、 奇函數(shù):___________________________________________________

          4、 偶函數(shù):______________________________________________________

          【概念深化】

          (1)、強(qiáng)調(diào)定義中任意二字,奇偶性是函數(shù)在定義域上的整體性質(zhì)。

          (2)、奇函數(shù)偶函數(shù)的.定義域關(guān)于原點(diǎn)對稱。

          5、奇函數(shù)與偶函數(shù)圖像的對稱性:

          如果一個(gè)函數(shù)是奇函數(shù),則這個(gè)函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對稱中心的__________。反之,如果一個(gè)函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對稱中心的中心對稱圖形,則這個(gè)函數(shù)是___________。

          如果一個(gè)函數(shù)是偶函數(shù),則這個(gè)函數(shù)的圖像是以 軸為對稱軸的__________。反之,如果一個(gè)函數(shù)的圖像是關(guān)于 軸對稱,則這個(gè)函數(shù)是___________。

          6. 根據(jù)函數(shù)的奇偶性,函數(shù)可以分為____________________________________.

          題型一:判定函數(shù)的奇偶性。

          例1、判斷下列函數(shù)的奇偶性:

          (1) (2) (3)

          (4) (5)

          練習(xí):教材第49頁,練習(xí)A第1題

          總結(jié):根據(jù)例題,你能給出用定義判斷函數(shù)奇偶性的步驟?

          題型二:利用奇偶性求函數(shù)解析式

          例2:若f(x)是定義在R上的奇函數(shù),當(dāng)x0時(shí),f(x)=x(1-x),求當(dāng) 時(shí)f(x)的解析式。

          練習(xí):若f(x)是定義在R上的奇函數(shù),當(dāng)x0時(shí),f(x)=x|x-2|,求當(dāng)x0時(shí)f(x)的解析式。

          已知定義在實(shí)數(shù)集 上的奇函數(shù) 滿足:當(dāng)x0時(shí), ,求 的表達(dá)式

          題型三:利用奇偶性作函數(shù)圖像

          例3 研究函數(shù) 的性質(zhì)并作出它的圖像

          練習(xí):教材第49練習(xí)A第3,4,5題,練習(xí)B第1,2題

          當(dāng)堂檢測

          1 已知 是定義在R上的奇函數(shù),則( D )

          A. B. C. D.

          2 如果偶函數(shù) 在區(qū)間 上是減函數(shù),且最大值為7,那么 在區(qū)間 上是( B )

          A. 增函數(shù)且最小值為-7 B. 增函數(shù)且最大值為7

          C. 減函數(shù)且最小值為-7 D. 減函數(shù)且最大值為7

          3 函數(shù) 是定義在區(qū)間 上的偶函數(shù),且 ,則下列各式一定成立的是(C )

          A. B. C. D.

          4 已知函數(shù) 為奇函數(shù),若 ,則 -1

          5 若 是偶函數(shù),則 的單調(diào)增區(qū)間是

          6 下列函數(shù)中不是偶函數(shù)的是(D )

          A B C D

          7 設(shè)f(x)是R上的偶函數(shù),切在 上單調(diào)遞減,則f(-2),f(- ),f(3)的大小關(guān)系是( A )

          A B f(- )f(-2) f(3) C f(- )

          8 奇函數(shù) 的圖像必經(jīng)過點(diǎn)( C )

          A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( ))

          9 已知函數(shù) 為偶函數(shù),其圖像與x軸有四個(gè)交點(diǎn),則方程f(x)=0的所有實(shí)根之和是( A )

          A 0 B 1 C 2 D 4

          10 設(shè)f(x)是定義在R上的奇函數(shù),且x0時(shí),f(x)= ,則f(-2)=_-5__

          11若f(x)在 上是奇函數(shù),且f(3)_f(-1)

          12.解答題

          用定義判斷函數(shù) 的奇偶性。

          13定義證明函數(shù)的奇偶性

          已知函數(shù) 在區(qū)間D上是奇函數(shù),函數(shù) 在區(qū)間D上是偶函數(shù),求證: 是奇函數(shù)

          14利用函數(shù)的奇偶性求函數(shù)的解析式:

          已知分段函數(shù) 是奇函數(shù),當(dāng) 時(shí)的解析式為 ,求這個(gè)函數(shù)在區(qū)間 上的解析表達(dá)式。

        高一數(shù)學(xué)教案8

          目標(biāo):

          1.讓學(xué)生熟練掌握二次函數(shù)的圖象,并會(huì)判斷一元二次方程根的存在性及根的個(gè)數(shù) ;

          2.讓學(xué)生了解函數(shù)的零點(diǎn)與方程根的聯(lián)系 ;

          3.讓學(xué)生認(rèn)識到函數(shù)的圖象及基本性質(zhì)(特別是單調(diào)性)在確定函數(shù)零點(diǎn)中的作用 ;

          4。培養(yǎng)學(xué)生動(dòng)手操作的能力 。

          二、教學(xué)重點(diǎn)、難點(diǎn)

          重點(diǎn):零點(diǎn)的概念及存在性的判定;

          難點(diǎn):零點(diǎn)的確定。

          三、復(fù)習(xí)引入

          例1:判斷方程 x2-x-6=0 解的存在。

          分析:考察函數(shù)f(x)= x2-x-6, 其

          圖像為拋物線容易看出,f(0)=-60,

          f(4)0,f(-4)0

          由于函數(shù)f(x)的圖像是連續(xù)曲線,因此,

          點(diǎn)B (0,-6)與點(diǎn)C(4,6)之間的那部分曲線

          必然穿過x軸,即在區(qū)間(0,4)內(nèi)至少有點(diǎn)

          X1 使f(X1)=0;同樣,在區(qū)間(-4,0) 內(nèi)也至

          少有點(diǎn)X2,使得f( X2)=0,而方程至多有兩

          個(gè)解,所以在(-4,0),(0,4)內(nèi)各有一解

          定義:對于函數(shù)y=f(x),我們把使f(x)=0的實(shí)數(shù) x叫函數(shù)y=f(x)的零點(diǎn)

          抽象概括

          y=f(x)的圖像與x軸的交點(diǎn)的橫坐標(biāo)叫做該函數(shù)的`零點(diǎn),即f(x)=0的解。

          若y=f(x)的圖像在[a,b]上是連續(xù)曲線,且f(a)f(b)0,則在(a,b)內(nèi)至少有一個(gè)零點(diǎn),即f(x)=0在 (a,b)內(nèi)至少有一個(gè)實(shí)數(shù)解。

          f(x)=0有實(shí)根(等價(jià)與y=f(x))與x軸有交點(diǎn)(等價(jià)與)y=f(x)有零點(diǎn)

          所以求方程f(x)=0的根實(shí)際上也是求函數(shù)y=f(x)的零點(diǎn)

          注意:1、這里所說若f(a)f(b)0,則在區(qū)間(a,b)內(nèi)方程f(x)=0至少有一個(gè)實(shí)數(shù)解指出了方程f(x)=0的實(shí)數(shù)解的存在性,并不能判斷具體有多少個(gè)解;

          2、若f(a)f(b)0,且y=f(x)在(a,b)內(nèi)是單調(diào)的,那么,方程f(x)=0在(a,b)內(nèi)有唯一實(shí)數(shù)解;

          3、我們所研究的大部分函數(shù),其圖像都是連續(xù)的曲線;

          4、但此結(jié)論反過來不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)

          5、缺少條件在[a,b]上是連續(xù)曲線則不成立,如:f(x)=1/ x,有f(-1)xf(1)0但沒有零點(diǎn)。

          四、知識應(yīng)用

          例2:已知f(x)=3x-x2 ,問方程f(x)=0在區(qū)間[-1,0]內(nèi)沒有實(shí)數(shù)解?為什么?

          解:f(x)=3x-x2的圖像是連續(xù)曲線, 因?yàn)?/p>

          f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,

          所以f(-1) f(0) 0,在區(qū)間[-1,0]內(nèi)有零點(diǎn),即f(x)=0在區(qū)間[-1,0]內(nèi)有實(shí)數(shù)解

          練習(xí):求函數(shù)f(x)=lnx+2x-6 有沒有零點(diǎn)?

          例3 判定(x-2)(x-5)=1有兩個(gè)相異的實(shí)數(shù)解,且有一個(gè)大于5,一個(gè)小于2。

          解:考慮函數(shù)f(x)=(x-2)(x-5)-1,有

          f(5)=(5-2)(5-5)-1=-1

          f(2)=(2-2)(2-5)-1=-1

          又因?yàn)閒(x)的圖像是開口向上的拋物線,所以拋物線與橫軸在(5,+)內(nèi)有一個(gè)交點(diǎn),在( -,2)內(nèi)也有一個(gè)交點(diǎn),所以方程式(x-2)(x-5)=1有兩個(gè)相異數(shù)解,且一個(gè)大于5,一個(gè)小于2。

          練習(xí):關(guān)于x的方程2x2-3x+2m=0有兩個(gè)實(shí)根均在[-1,1]內(nèi),求m的取值范圍。

          五、課后作業(yè)

          p133第2,3題

        高一數(shù)學(xué)教案9

          【摘要】鑒于大家對數(shù)學(xué)網(wǎng)十分關(guān)注,小編在此為大家整理了此文空間幾何體的三視圖和直觀圖高一數(shù)學(xué)教案,供大家參考!

          本文題目:空間幾何體的三視圖和直觀圖高一數(shù)學(xué)教案

          第一課時(shí) 1.2.1中心投影與平行投影 1.2.2空間幾何體的三視圖

          教學(xué)要求:能畫出簡單幾何體的三視圖;能識別三視圖所表示的空間幾何體.

          教學(xué)重點(diǎn):畫出三視圖、識別三視圖.

          教學(xué)難點(diǎn):識別三視圖所表示的空間幾何體.

          教學(xué)過程:

          一、新課導(dǎo)入:

          1. 討論:能否熟練畫出上節(jié)所學(xué)習(xí)的幾何體?工程師如何制作工程設(shè)計(jì)圖紙?

          2. 引入:從不同角度看廬山,有古詩:橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同。不識廬山真面目,只緣身在此山中。 對于我們所學(xué)幾何體,常用三視圖和直觀圖來畫在紙上.

          三視圖:觀察者從不同位置觀察同一個(gè)幾何體,畫出的空間幾何體的圖形;

          直觀圖:觀察者站在某一點(diǎn)觀察幾何體,畫出的空間幾何體的圖形.

          用途:工程建設(shè)、機(jī)械制造、日常生活.

          二、講授新課:

          1. 教學(xué)中心投影與平行投影:

         、 投影法的提出:物體在光線的照射下,就會(huì)在地面或墻壁上產(chǎn)生影子。人們將這種自然現(xiàn)象加以科學(xué)的抽象,總結(jié)其中的規(guī)律,提出了投影的方法。

         、 中心投影:光由一點(diǎn)向外散射形成的投影。其投影的大小隨物體與投影中心間距離的變化而變化,所以其投影不能反映物體的.實(shí)形.

         、 平行投影:在一束平行光線照射下形成的投影. 分正投影、斜投影.

          討論:點(diǎn)、線、三角形在平行投影后的結(jié)果.

          2. 教學(xué)柱、錐、臺(tái)、球的三視圖:

          定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖

          討論:三視圖與平面圖形的關(guān)系? 畫出長方體的三視圖,并討論所反應(yīng)的長、寬、高

          結(jié)合球、圓柱、圓錐的模型,從正面(自前而后)、側(cè)面(自左而右)、上面(自上而下)三個(gè)角度,分別觀察,畫出觀察得出的各種結(jié)果. 正視圖、側(cè)視圖、俯視圖.

         、 試畫出:棱柱、棱錐、棱臺(tái)、圓臺(tái)的三視圖. (

         、 討論:三視圖,分別反應(yīng)物體的哪些關(guān)系(上下、左右、前后)?哪些數(shù)量(長、寬、高)

          正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;

          俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;

          側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

         、 討論:根據(jù)以上的三視圖,如何逆向得到幾何體的形狀.

          (試變化以上的三視圖,說出相應(yīng)幾何體的擺放)

          3. 教學(xué)簡單組合體的三視圖:

         、 畫出教材P16 圖(2)、(3)、(4)的三視圖.

          ② 從教材P16思考中三視圖,說出幾何體.

          4. 練習(xí):

         、 畫出正四棱錐的三視圖.

          畫出右圖所示幾何體的三視圖.

         、 右圖是一個(gè)物體的正視圖、左視圖和俯視圖,試描述該物體的形狀.

          5. 小結(jié):投影法;三視圖;順與逆

          三、鞏固練習(xí): 練習(xí):教材P17 1、2、3、4

          第二課時(shí) 1.2.3 空間幾何體的直觀圖

          教學(xué)要求:掌握斜二測畫法;能用斜二測畫法畫空間幾何體的直觀圖.

          教學(xué)重點(diǎn):畫出直觀圖.

        高一數(shù)學(xué)教案10

          1、教材(教學(xué)內(nèi)容)

          本課時(shí)主要研究任意角三角函數(shù)的定義。三角函數(shù)是一類重要的基本初等函數(shù),是描述周期性現(xiàn)象的重要數(shù)學(xué)模型,本課時(shí)的內(nèi)容具有承前啟后的重要作用:承前是因?yàn)榭梢杂煤瘮?shù)的定義來抽象和規(guī)范三角函數(shù)的定義,同時(shí)也可以類比研究函數(shù)的模式和方法來研究三角函數(shù);啟后是指定義了三角函數(shù)之后,就可以進(jìn)一步研究三角函數(shù)的性質(zhì)及圖象特征,并體會(huì)三角函數(shù)在解決具有周期性變化規(guī)律問題中的作用,從而更深入地領(lǐng)會(huì)數(shù)學(xué)在其它領(lǐng)域中的重要應(yīng)用、

          2、設(shè)計(jì)理念

          本堂課采用“問題解決”教學(xué)模式,在課堂上既充分發(fā)揮學(xué)生的主體作用,又體現(xiàn)了教師的引導(dǎo)作用。整堂課先通過問題引導(dǎo)學(xué)生梳理已有的知識結(jié)構(gòu),展開合理的聯(lián)想,提出整堂課要解決的中心問題:圓周運(yùn)動(dòng)等具周期性規(guī)律運(yùn)動(dòng)可以建立函數(shù)模型來刻畫嗎?從而引導(dǎo)學(xué)生帶著問題閱讀和鉆研教材,引發(fā)認(rèn)知沖突,再通過問題引導(dǎo)學(xué)生改造或重構(gòu)已有的認(rèn)知結(jié)構(gòu),并運(yùn)用類比方法,形成“任意角三角函數(shù)的定義”這一新的概念,最后通過例題與練習(xí),將任意角三角函數(shù)的定義,內(nèi)化為學(xué)生新的認(rèn)識結(jié)構(gòu),從而達(dá)成教學(xué)目標(biāo)、

          3、教學(xué)目標(biāo)

          知識與技能目標(biāo):形成并掌握任意角三角函數(shù)的定義,并學(xué)會(huì)運(yùn)用這一定義,解決相關(guān)問題、

          過程與方法目標(biāo):體會(huì)數(shù)學(xué)建模思想、類比思想和化歸思想在數(shù)學(xué)新概念形成中的重要作用、

          情感態(tài)度與價(jià)值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會(huì)閱讀數(shù)學(xué)教材,學(xué)會(huì)發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、

          4、重點(diǎn)難點(diǎn)

          重點(diǎn):任意角三角函數(shù)的定義、

          難點(diǎn):任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、

          5、學(xué)情分析

          學(xué)生已有的認(rèn)知結(jié)構(gòu):函數(shù)的概念、平面直角坐標(biāo)系的概念、任意角和弧度制的相關(guān)概念、以直角三角形為載體的銳角三角函數(shù)的概念、在教學(xué)過程中,需要先將學(xué)生的以直角三角形為載體的銳角三角函數(shù)的概念改造為以象限角為載體的銳角三角函數(shù),并形成以角的終邊與單位園的交點(diǎn)的坐標(biāo)來表示的銳角三角函數(shù)的概念,再拓展到任意角的三角函數(shù)的定義,從而使學(xué)生形成新的認(rèn)知結(jié)構(gòu)、

          6、教法分析

          “問題解決”教學(xué)法,是以問題為主線,引導(dǎo)和驅(qū)動(dòng)學(xué)生的思維和學(xué)習(xí)活動(dòng),并通過問題,引導(dǎo)學(xué)生的質(zhì)疑和討論,充分展示學(xué)生的思維過程,最后在解決問題的過程中形成新的認(rèn)知結(jié)構(gòu)、這種教學(xué)模式能較好地體現(xiàn)課堂上老師的.主導(dǎo)作用,也能充分發(fā)揮課堂上學(xué)生的主體作用、

          7、學(xué)法分析

          本課時(shí)先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認(rèn)知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運(yùn)用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認(rèn)識結(jié)構(gòu),達(dá)成教學(xué)目標(biāo)、

          8、教學(xué)設(shè)計(jì)(過程)

          一、引入

          問題1:我們已經(jīng)學(xué)過了任意角和弧度制,你對“角”這一概念印象最深的是什么?

          問題2:研究“任意角”這一概念時(shí),我們引進(jìn)了平面直角坐標(biāo)系,對平面直角坐標(biāo)系,令你印象最深刻的是什么?

          問題3:當(dāng)角clipXimage002的終邊在繞頂點(diǎn)O轉(zhuǎn)動(dòng)時(shí),終邊上的一個(gè)點(diǎn)P(x,y)必定隨著終邊繞頂點(diǎn)O作圓周運(yùn)動(dòng),在這圓周運(yùn)動(dòng)中,有哪些數(shù)量?圓周運(yùn)動(dòng)的這些量之間的關(guān)系能用一個(gè)函數(shù)模型來刻畫嗎?

          二、原有認(rèn)知結(jié)構(gòu)的改造和重構(gòu)

          問題4:當(dāng)角clipXimage002[1]是銳角時(shí),clipXimage004,線段OP的長度clipXimage006這幾個(gè)量之間有何關(guān)系?

          學(xué)生回答,分析結(jié)論,指出這種關(guān)系就是我們在初中學(xué)習(xí)過的銳角三角函數(shù)

          學(xué)生閱讀教材,并思考:

          問題5:銳角三角函數(shù)是我們高中意義上的函數(shù)嗎?如何利用函數(shù)的定義來理解它?

          學(xué)生討論并回答

          三、新概念的形成

          問題6:如果我們將角度推廣到任意角,我們能得到任意角的三角函數(shù)的定義嗎?

          學(xué)生回答,并閱讀教材,得到任意角三角函數(shù)的定義、并思考:

          問題7:任意角三角函數(shù)的定義符合我們高中所學(xué)的函數(shù)定義嗎?

          展示任意角三角函數(shù)的定義,并指出它是如何刻劃圓周運(yùn)動(dòng)的

          并類比函數(shù)的研究方法,得出任意角三角函數(shù)的定義域和值域。

          四、概念的運(yùn)用

          1、基礎(chǔ)練習(xí)

          ①口算clipXimage008的值、

          ②分別求clipXimage010的值

          小結(jié):ⅰ)畫終邊,求終邊與單位圓交點(diǎn)的坐標(biāo),算比值

         、)誘導(dǎo)公式(一)

         、廴鬰lipXimage012,試寫出角clipXimage002[2]的值。

         、苋鬰lipXimage015,不求值,試判斷clipXimage017的符號

          ⑤若clipXimage019,則clipXimage021為第象限的角、

          例1、已知角clipXimage002[3]的終邊過點(diǎn)clipXimage024,求clipXimage026之值

          若P點(diǎn)的坐標(biāo)變?yōu)閏lipXimage028,求clipXimage030的值

          小結(jié):任意角三角函數(shù)的等價(jià)定義(終邊定義法)

          例2、一物體A從點(diǎn)clipXimage032出發(fā),在單位圓上沿逆時(shí)針方向作勻速圓周運(yùn)動(dòng),若經(jīng)過的弧長為clipXimage034,試用clipXimage034[1]表示物體A所在位置的坐標(biāo)。若該物體作圓周運(yùn)動(dòng)的圓的半徑變?yōu)閏lipXimage006[1],如何用clipXimage034[2]來表示物體A所在位置的坐標(biāo)?

          小結(jié):可以采用三角函數(shù)模型來刻畫圓周運(yùn)動(dòng)

          五、拓展探究

          問題8:當(dāng)角clipXimage002[4]的終邊繞頂點(diǎn)O作圓周運(yùn)動(dòng)時(shí),角clipXimage002[5]的終邊與單位圓的交點(diǎn)clipXimage039的坐標(biāo)clipXimage041clipXimage043與角clipXimage002[6]之間還可以建立其它函數(shù)模型嗎?

          思考:引入平面直角坐標(biāo)系后,我們可以把圓周運(yùn)動(dòng)用數(shù)來刻畫,這是將“形”轉(zhuǎn)化成為“數(shù)”;角clipXimage002[7]正弦值是一個(gè)數(shù),你能借助平面直角坐標(biāo)系和單位圓,用“形”來表示這個(gè)“數(shù)”嗎?角clipXimage002[8]余弦值、正切值呢?

          六、課堂小結(jié)

          問題9:請你談?wù)劚竟?jié)課的收獲有哪些?

          七、課后作業(yè)

          教材P21第6、7、8題

        高一數(shù)學(xué)教案11

          教學(xué)目標(biāo):

          1、掌握對數(shù)的運(yùn)算性質(zhì),并能理解推導(dǎo)這些法則的依據(jù)和過程;

          2、能較熟練地運(yùn)用法則解決問題;

          教學(xué)重點(diǎn):

          對數(shù)的運(yùn)算性質(zhì)

          教學(xué)過程:

          一、問題情境:

          1、指數(shù)冪的運(yùn)算性質(zhì);

          2、問題:對數(shù)運(yùn)算也有相應(yīng)的運(yùn)算性質(zhì)嗎?

          二、學(xué)生活動(dòng):

          1、觀察教材P59的表2—3—1,驗(yàn)證對數(shù)運(yùn)算性質(zhì)、

          2、理解對數(shù)的'運(yùn)算性質(zhì)、

          3、證明對數(shù)性質(zhì)、

          三、建構(gòu)數(shù)學(xué):

          1)引導(dǎo)學(xué)生驗(yàn)證對數(shù)的運(yùn)算性質(zhì)、

          2)推導(dǎo)和證明對數(shù)運(yùn)算性質(zhì)、

          3)運(yùn)用對數(shù)運(yùn)算性質(zhì)解題、

          探究:

          ①簡易語言表達(dá):“積的對數(shù)=對數(shù)的和”……

         、谟袝r(shí)逆向運(yùn)用公式運(yùn)算:如

          ③真數(shù)的取值范圍必須是:不成立;不成立、

         、茏⒁猓海

          四、數(shù)學(xué)運(yùn)用:

          1、例題:

          例1、(教材P60例4)求下列各式的值:

         。1);(2)125;(3)(補(bǔ)充)lg、

          例2、(教材P60例4)已知,,求下列各式的值(結(jié)果保留4位小數(shù))

          (1);(2)、

          例3、用,,表示下列各式:

          例4、計(jì)算:

         。1);(2);(3)

          2、練習(xí):

          P60(練習(xí))1,2,4,5、

          五、回顧小結(jié):

          本節(jié)課學(xué)習(xí)了以下內(nèi)容:對數(shù)的運(yùn)算法則,公式的逆向使用、

          六、課外作業(yè):

          P63習(xí)題5

          補(bǔ)充:

          1、求下列各式的值:

          (1)6—3;(2)lg5+lg2;(3)3+、

          2、用lgx,lgy,lgz表示下列各式:

         。1)lg(xyz);(2)lg;(3);(4)、

          3、已知lg2=0、3010,lg3=0、4771,求下列各對數(shù)的值(精確到小數(shù)點(diǎn)后第四位)

         。1)lg6;(2)lg;(3)lg;(4)lg32、

        高一數(shù)學(xué)教案12

          教材:邏輯聯(lián)結(jié)詞

          目的:要求學(xué)生了解復(fù)合命題的意義,并能指出一個(gè)復(fù)合命題是有哪些簡單命題與邏輯聯(lián)結(jié)詞,并能由簡單命題構(gòu)成含有邏輯聯(lián)結(jié)詞的復(fù)合命題。

          過程

          一、提出課題:簡單邏輯、邏輯聯(lián)結(jié)詞

          二、命題的概念:

          例:125 ① 3是12的約數(shù) ② 0.5是整數(shù) ③

          定義:可以判斷真假的語句叫命題。正確的叫真命題,錯(cuò)誤的叫假命題。

          如:①②是真命題,③是假命題

          反例:3是12的約數(shù)嗎? x5 都不是命題

          不涉及真假(問題) 無法判斷真假

          上述①②③是簡單命題。 這種含有變量的語句叫開語句(條件命題)。

          三、復(fù)合命題:

          1.定義:由簡單命題再加上一些邏輯聯(lián)結(jié)詞構(gòu)成的命題叫復(fù)合命題。

          2.例:

          (1)10可以被2或5整除④ 10可以被2整除或10可以被5整除

          (2)菱形的對角線互相 菱形的`對角線互相垂直且菱形的

          垂直且平分⑤ 對角線互相平分

          (3)0.5非整數(shù)⑥ 非0.5是整數(shù)

          觀察:形成概念:簡單命題在加上或且非這些邏輯聯(lián)結(jié)詞成復(fù)合命題。

          3.其實(shí),有些概念前面已遇到過

          如:或:不等式 x2x60的解集 { x | x2或x3 }

          且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }

          四、復(fù)合命題的構(gòu)成形式

          如果用 p, q, r, s表示命題,則復(fù)合命題的形式接觸過的有以下三種:

          即: p或q (如 ④) 記作 pq

          p且q (如 ⑤) 記作 pq

          非p (命題的否定) (如 ⑥) 記作 p

          小結(jié):1.命題 2.復(fù)合命題 3.復(fù)合命題的構(gòu)成形式

        高一數(shù)學(xué)教案13

          教學(xué)目標(biāo):

          1、掌握平面向量的數(shù)量積及其幾何意義;

          2、掌握平面向量數(shù)量積的重要性質(zhì)及運(yùn)算律;

          3、了解用平面向量的數(shù)量積可以處理有關(guān)長度、角度和垂直的問題;

          4、掌握向量垂直的條件、

          教學(xué)重難點(diǎn):

          教學(xué)重點(diǎn):平面向量的數(shù)量積定義

          教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用

          教學(xué)工具:

          投影儀

          教學(xué)過程:

          一、復(fù)習(xí)引入:

          1、向量共線定理向量與非零向量共線的充要條件是:有且只有一個(gè)非零實(shí)數(shù)λ,使=λ

          五,課堂小結(jié)

          (1)請學(xué)生回顧本節(jié)課所學(xué)過的知識內(nèi)容有哪些?所涉及到的`主要數(shù)學(xué)思想方法有那些?

          (2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請向老師提出。

          (3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?

          六、課后作業(yè)

          P107習(xí)題2、4A組2、7題

          課后小結(jié)

          (1)請學(xué)生回顧本節(jié)課所學(xué)過的知識內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?

          (2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請向老師提出。

          (3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?

          課后習(xí)題

        高一數(shù)學(xué)教案14

          一、教學(xué)目標(biāo)

          1.知識與技能

          (1)解二分法求解方程的近似解的思想方法,會(huì)用二分法求解具體方程的近似解;

         。2)體會(huì)程序化解決問題的思想,為算法的學(xué)習(xí)作準(zhǔn)備。

          2.過程與方法

         。1)讓學(xué)生在求解方程近似解的實(shí)例中感知二分發(fā)思想;

         。2)讓學(xué)生歸納整理本節(jié)所學(xué)的知識。

          3.情感、態(tài)度與價(jià)值觀

          ①體會(huì)二分法的程序化解決問題的思想,認(rèn)識二分法的價(jià)值所在,使學(xué)生更加熱愛數(shù)學(xué);

         、谂囵B(yǎng)學(xué)生認(rèn)真、耐心、嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)品質(zhì)。

          二、 教學(xué)重點(diǎn)、難點(diǎn)

          重點(diǎn):用二分法求解函數(shù)f(x)的零點(diǎn)近似值的步驟。

          難點(diǎn):為何由︱a - b ︳< 便可判斷零點(diǎn)的近似值為a(或b)?

          三、 學(xué)法與教學(xué)用具

          1.想-想。

          2.教學(xué)用具:計(jì)算器。

          四、教學(xué)設(shè)想

         。ㄒ唬、創(chuàng)設(shè)情景,揭示課題

          提出問題:

         。1)一元二次方程可以用公式求根,但是沒有公式可以用來求解放程 ㏑x+2x-6=0的根;聯(lián)系函數(shù)的零點(diǎn)與相應(yīng)方程根的關(guān)系,能否利用函數(shù)的有關(guān)知識來求她的根呢?

          (2)通過前面一節(jié)課的學(xué)習(xí),函數(shù)f(x)=㏑x+2x-6在區(qū)間內(nèi)有零點(diǎn);進(jìn)一步的問題是,如何找到這個(gè)零點(diǎn)呢?

         。ǘ、研討新知

          一個(gè)直觀的想法是:如果能夠?qū)⒘泓c(diǎn)所在的范圍盡量的縮小,那么在一定的精確度的要求下,我們可以得到零點(diǎn)的近似值;為了方便,我們通過“取中點(diǎn)”的方法逐步縮小零點(diǎn)所在的范圍。

          取區(qū)間(2,3)的中點(diǎn)2.5,用計(jì)算器算得f(2.5)≈-0.084,因?yàn)閒(2.5)xf(3)<0,所以零點(diǎn)在區(qū)間(2.5,3)內(nèi);

          再取區(qū)間(2.5,3)的中點(diǎn)2.75,用計(jì)算器算得f(2.75)≈0.512,因?yàn)閒(2.75)xf(2.5)<0,所以零點(diǎn)在(2.5,2.75)內(nèi);

          由于(2,3),(2.5,3),(2.5,2.75)越來越小,所以零點(diǎn)所在范圍確實(shí)越來越小了;重復(fù)上述步驟,那么零點(diǎn)所在范圍會(huì)越來越小,這樣在有限次重復(fù)相同的步驟后,在一定的精確度下,將所得到的零點(diǎn)所在區(qū)間上任意的一點(diǎn)作為零點(diǎn)的近似值,特別地可以將區(qū)間的端點(diǎn)作為零點(diǎn)的近似值。例如,當(dāng)精確度為0.01時(shí),由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我們可以將x=2.54作為函數(shù)f(x)=㏑x+2x-6零點(diǎn)的近似值,也就是方程㏑x+2x-6=0近似值。

          這種求零點(diǎn)近似值的'方法叫做二分法。

          1.師:引導(dǎo)學(xué)生仔細(xì)體會(huì)上邊的這段文字,結(jié)合課本上的相關(guān)部分,感悟其中的思想方法.

          生:認(rèn)真理解二分法的函數(shù)思想,并根據(jù)課本上二分法的一般步驟,探索其求法。

          2.為什么由︱a - b ︳<便可判斷零點(diǎn)的近似值為a(或b)?

          先由學(xué)生思考幾分鐘,然后作如下說明:

          設(shè)函數(shù)零點(diǎn)為x0,則a<x0<b,則:

          0<x0-a<b-a,a-b<x0-b<0;

          由于︱a - b ︳<,所以

          ︱x0 - a ︳<b-a<,︱x0 - b ︳<∣ a-b∣<,

          即a或b 作為零點(diǎn)x0的近似值都達(dá)到了給定的精確度。

        。ㄈ㈧柟躺罨l(fā)展思維

          1.學(xué)生在老師引導(dǎo)啟發(fā)下完成下面的例題

          例2.借助計(jì)算器用二分法求方程2x+3x=7的近似解(精確到0.01)

          問題:原方程的近似解和哪個(gè)函數(shù)的零點(diǎn)是等價(jià)的?

          師:引導(dǎo)學(xué)生在方程右邊的常數(shù)移到左邊,把左邊的式子令為f(x),則原方程的解就是f(x)的零點(diǎn)。

          生:借助計(jì)算機(jī)或計(jì)算器畫出函數(shù)的圖象,結(jié)合圖象確定零點(diǎn)所在的區(qū)間,然后利用二分法求解.

          (四)、歸納整理,整體認(rèn)識

          在師生的互動(dòng)中,讓學(xué)生了解或體會(huì)下列問題:

         。1)本節(jié)我們學(xué)過哪些知識內(nèi)容?

          (2)你認(rèn)為學(xué)習(xí)“二分法”有什么意義?

          (3)在本節(jié)課的學(xué)習(xí)過程中,還有哪些不明白的地方?

         。ㄎ澹、布置作業(yè)

          P92習(xí)題3.1A組第四題,第五題。

        高一數(shù)學(xué)教案15

          一、教學(xué)目標(biāo)

          1.知識與技能:掌握畫三視圖的基本技能,豐富學(xué)生的空間想象力。

          2.過程與方法:通過學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。

          3.情感態(tài)度與價(jià)值觀:提高學(xué)生空間想象力,體會(huì)三視圖的作用。

          二、教學(xué)重點(diǎn):

          畫出簡單幾何體、簡單組合體的三視圖;

          難點(diǎn):識別三視圖所表示的空間幾何體。

          三、學(xué)法指導(dǎo):

          觀察、動(dòng)手實(shí)踐、討論、類比。

          四、教學(xué)過程

          (一)創(chuàng)設(shè)情景,揭開課題

          展示廬山的風(fēng)景圖——“橫看成嶺側(cè)看成峰,遠(yuǎn)近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體。

          (二)講授新課

          1、中心投影與平行投影:

          中心投影:光由一點(diǎn)向外散射形成的投影;

          平行投影:在一束平行光線照射下形成的投影。

          正投影:在平行投影中,投影線正對著投影面。

          2、三視圖:

          正視圖:光線從幾何體的前面向后面正投影,得到的'投影圖;

          側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;

          俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。

          三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的三視圖。

          三視圖的畫法規(guī)則:長對正,高平齊,寬相等。

          長對正:正視圖與俯視圖的長相等,且相互對正;

          高平齊:正視圖與側(cè)視圖的高度相等,且相互對齊;

          寬相等:俯視圖與側(cè)視圖的寬度相等。

          3、畫長方體的三視圖:

          正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。

          長方體的三視圖都是長方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。

          4、畫圓柱、圓錐的三視圖:

          5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。

          (三)鞏固練習(xí)

          課本P15練習(xí)1、2;P20習(xí)題1.2[A組]2。

          (四)歸納整理

          請學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖

          (五)布置作業(yè)

          課本P20習(xí)題1.2[A組]1。

        【高一數(shù)學(xué)教案】相關(guān)文章:

        高一數(shù)學(xué)教案11-04

        人教版高一數(shù)學(xué)教案10-17

        高一數(shù)學(xué)教案模板11-08

        高一數(shù)學(xué)教案(15篇)12-13

        高一數(shù)學(xué)教案設(shè)計(jì)09-20

        高一數(shù)學(xué)教案模板范文01-27

        (優(yōu)秀)人教版高一數(shù)學(xué)教案03-27

        高一數(shù)學(xué)教案模板通用4篇11-08

        高一數(shù)學(xué)教案必修一導(dǎo)教案文案01-06

        小學(xué)數(shù)學(xué)教案06-13