欧美三级中文字幕乱码,日本亚洲中文无线码在线观看,91精品视频免费观看,伊人久久综合

        當(dāng)前位置:9136范文網(wǎng)>教育范文>教案>高一數(shù)學(xué)教案必修一導(dǎo)教案文案

        高一數(shù)學(xué)教案必修一導(dǎo)教案文案

        時(shí)間:2024-01-06 08:42:42 教案 我要投稿
        • 相關(guān)推薦

        高一數(shù)學(xué)教案必修一導(dǎo)教案文案

          隨著社交網(wǎng)絡(luò)的興起,大家都對那些朗朗上口的文案很是熟悉吧,文案用以宣泄自己的情緒,調(diào)節(jié)心情。那些被廣泛運(yùn)用的文案都是什么樣子的呢?以下是小編為大家整理的高一數(shù)學(xué)教案必修一導(dǎo)教案文案,歡迎大家分享。

        高一數(shù)學(xué)教案必修一導(dǎo)教案文案

        高一數(shù)學(xué)教案必修一導(dǎo)教案文案1

          教學(xué)目標(biāo)

          1.使學(xué)生掌握指數(shù)函數(shù)的概念,圖象和性質(zhì).

          (1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域.

          (2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認(rèn)識指數(shù)函數(shù)的性質(zhì).

          (3) 能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會利用指數(shù)函數(shù)的圖象畫出形如

          的圖象.

          2. 通過對指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法.

          3.通過對指數(shù)函數(shù)的研究,讓學(xué)生認(rèn)識到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.

          教學(xué)建議

          教材分析

          (1) 指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點(diǎn)研究.

          (2) 本節(jié)的教學(xué)重點(diǎn)是在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和性質(zhì).難點(diǎn)是對底數(shù)

          在

          和

          時(shí),函數(shù)值變化情況的區(qū)分.

          (3)指數(shù)函數(shù)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從指數(shù)函數(shù)的.研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.

          教法建議

          (1)關(guān)于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是

          的樣子,不能有一點(diǎn)差異,諸如

          ,等都不是指數(shù)函數(shù).

          (2)對底數(shù)

          的限制條件的理解與認(rèn)識也是認(rèn)識指數(shù)函數(shù)的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷@個條件的認(rèn)識不僅關(guān)系到對指數(shù)函數(shù)的認(rèn)識及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對數(shù)函數(shù)中底數(shù)的認(rèn)識,所以一定要真正了解它的由來.

          關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象.

        高一數(shù)學(xué)教案必修一導(dǎo)教案文案2

          一、教學(xué)目標(biāo)

          (1)了解含有“或”、“且”、“非”復(fù)合命題的概念及其構(gòu)成形式;

          (2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;

          (3)能用邏輯聯(lián)結(jié)詞和簡單命題構(gòu)成不同形式的復(fù)合命題;

          (4)能識別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡單命題;

          (5)會用真值表判斷相應(yīng)的復(fù)合命題的真假;

          (6)在知識學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能.

          二、教學(xué)重點(diǎn)難點(diǎn):

          重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對“或”的含義的理解.

          三、教學(xué)過程

          1.新課導(dǎo)入

          在當(dāng)今社會中,人們從事任何工作、學(xué)習(xí),都離不開邏輯.具有一定邏輯知識是構(gòu)成一個公民的文化素質(zhì)的重要方面.數(shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強(qiáng)調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識,將會在我們學(xué)習(xí)的過程中不知不覺地經(jīng)常犯邏輯性的錯誤.其實(shí),同學(xué)們在初中已經(jīng)開始接觸一些簡易邏輯的知識.

          初一平面幾何中曾學(xué)過命題,請同學(xué)們舉一個命題的例子.(板書:命題.)

          (從初中接觸過的“命題”入手,提出問題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識.)

          學(xué)生舉例:平行四邊形的對角線互相平. ……(1)

          兩直線平行,同位角相等.…………(2)

          教師提問:“……相等的角是對頂角”是不是命題?……(3)

          (同學(xué)議論結(jié)果,答案是肯定的)

          教師提問:什么是命題?

          (學(xué)生進(jìn)行回憶、思考.)

          概念總結(jié):對一件事情作出了判斷的語句叫做命題.

          (教師肯定了同學(xué)的回答,并作板書.)

          由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.

          (教師利用投影片,和學(xué)生討論以下問題.)

          例1 判斷以下各語句是不是命題,若是,判斷其真假:

          命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題.

          初中所學(xué)的命題概念涉及邏輯知識,我們今天開始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡易邏輯的知識.

          2.講授新課

          大家看課本(人教版,試驗(yàn)修訂本,第一冊(上))從第25頁至26頁例1前,并歸納一下這段內(nèi)容主要講了哪些問題?

          (片刻后請同學(xué)舉手回答,一共講了四個問題.師生一道歸納如下.)

          (1)什么叫做命題?

          可以判斷真假的語句叫做命題.

          判斷一個語句是不是命題,關(guān)鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如 中含有變量 ,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).

          (2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.

          “或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式.

          對“或”的理解,可聯(lián)想到集合中“并集”的'概念. 中的“或”,它是指“ ”、“ ”中至少一個是成立的,即 且 ;也可以 且 ;也可以 且 .這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能.

          對“且”的理解,可聯(lián)想到集合中“交集”的概念. 中的“且”,是指“ ”、“ 這兩個條件都要滿足的意思.

          對“非”的理解,可聯(lián)想到集合中的“補(bǔ)集”概念,若命題 對應(yīng)于集合 ,則命題非 就對應(yīng)著集合 在全集 中的補(bǔ)集 .

          命題可分為簡單命題和復(fù)合命題.

          不含邏輯聯(lián)結(jié)詞的命題叫做簡單命題.簡單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.

          由簡單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.

          (4)命題的表示:用 , , , ,……來表示.

          (教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對復(fù)合命題的概念作出分析和展開.)

          我們接觸的復(fù)合命題一般有“ 或 ”、“ 且 ”、“非 ”、“若 則 ”等形式.

          給出一個含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說出構(gòu)成它的簡單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個簡單命題,寫出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.

          對于給出“若 則 ”形式的復(fù)合命題,應(yīng)能找到條件 和結(jié)論 .

          在判斷一個命題是簡單命題還是復(fù)合命題時(shí),不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無“或”,但它們都是復(fù)合命題.

          3.鞏固新課

          例2 判斷下列命題,哪些是簡單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡單命題.

          (1) ;

          (2)0.5非整數(shù);

          (3)內(nèi)錯角相等,兩直線平行;

          (4)菱形的對角線互相垂直且平分;

          (5)平行線不相交;

          (6)若 ,則 .

          (讓學(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)

          例3 寫出下表中各給定語的否定語(用課件打出來).

          若給定語為

          等于

          大于

          是

          都是

          至多有一個

          至少有一個

          至多有個

          其否定語分別為

          分析:“等于”的否定語是“不等于”;

          “大于”的否定語是“小于或者等于”;

          “是”的否定語是“不是”;

          “都是”的否定語是“不都是”;

          “至多有一個”的否定語是“至少有兩個”;

          “至少有一個”的否定語是“一個都沒有”;

          “至多有 個”的否定語是“至少有 個”.

          (如果時(shí)間寬裕,可讓學(xué)生討論后得出結(jié)論.)

          置疑:“或”、“且”的否定是什么?(視學(xué)生的情況、課堂時(shí)間作適當(dāng)?shù)谋嫖雠c展開.)

          4.課堂練習(xí):第26頁練習(xí)1,2.

          5.課外作業(yè):第29頁習(xí)題1.6 1,2.

        高一數(shù)學(xué)教案必修一導(dǎo)教案文案3

          教學(xué)目標(biāo):

          (1)理解子集、真子集、補(bǔ)集、兩個集合相等概念;

          (2)了解全集、空集的意義,(3)掌握有關(guān)子集、全集、補(bǔ)集的符號及表示方法,會用它們正確表示一些簡單的集合,培養(yǎng)學(xué)生的符號表示的能力;

          (4)會求已知集合的子集、真子集,會求全集中子集在全集中的補(bǔ)集;

          (5)能判斷兩集合間的包含、相等關(guān)系,并會用符號及圖形(文氏圖)準(zhǔn)確地表示出來,培養(yǎng)學(xué)生的數(shù)學(xué)結(jié)合的數(shù)學(xué)思想;

          (6)培養(yǎng)學(xué)生用集合的觀點(diǎn)分析問題、解決問題的能力.

          教學(xué)重點(diǎn):子集、補(bǔ)集的概念

          教學(xué)難點(diǎn):弄清元素與子集、屬于與包含之間的區(qū)別

          教學(xué)用具:幻燈機(jī)

          教學(xué)過程設(shè)計(jì)

          (一)導(dǎo)入新課

          上節(jié)課我們學(xué)習(xí)了集合、元素、集合中元素的三性、元素與集合的關(guān)系等知識.

          【提出問題】(投影打出)

          已知 , , ,問:

          1.哪些集合表示方法是列舉法.

          2.哪些集合表示方法是描述法.

          3.將集M、集從集P用圖示法表示.

          4.分別說出各集合中的元素.

          5.將每個集合中的元素與該集合的關(guān)系用符號表示出來.將集N中元素3與集M的關(guān)系用符號表示出來.

          6.集M中元素與集N有何關(guān)系.集M中元素與集P有何關(guān)系.

          【找學(xué)生回答】

          1.集合M和集合N;(口答)

          2.集合P;(口答)

          3.(筆練結(jié)合板演)

          4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)

          5. , , , , , , , (筆練結(jié)合板演)

          6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)

          【引入】在上面見到的集M與集N;集M與集P通過元素建立了某種關(guān)系,而具有這種關(guān)系的兩個集合在今后學(xué)習(xí)中會經(jīng)常出現(xiàn),本節(jié)將研究有關(guān)兩個集合間關(guān)系的問題.

          (二)新授知識

          1.子集

          (1)子集定義:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的.元素,我們就說集合A包含于集合B,或集合B包含集合A。

          記作: 讀作:A包含于B或B包含A

          當(dāng)集合A不包含于集合B,或集合B不包含集合A時(shí),則記作:A B或B A.

          性質(zhì):① (任何一個集合是它本身的子集)

         、 (空集是任何集合的子集)

          【置疑】能否把子集說成是由原來集合中的部分元素組成的集合?

          【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合.

          因?yàn)锽的子集也包括它本身,而這個子集是由B的全體元素組成的空集也是B的子集,而這個集合中并不含有B中的元素.由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的

          (2)集合相等:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時(shí)集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,記作A=B。

          例: ,可見,集合 ,是指A、B的所有元素完全相同.

          (3)真子集:對于兩個集合A與B,如果 ,并且 ,我們就說集合A是集合B的真子集,記作: (或 ),讀作A真包含于B或B真包含A。

          【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個元素不屬于A,那么集合A叫做集合B的真子集.”

          集合B同它的真子集A之間的關(guān)系,可用文氏圖表示,其中兩個圓的內(nèi)部分別表示集合A,B.

          【提問】

          (1) 寫出數(shù)集N,Z,Q,R的包含關(guān)系,并用文氏圖表示。

          (2) 判斷下列寫法是否正確

         、 A ② A ③ ④A A

          性質(zhì):

          (1)空集是任何非空集合的真子集。若 A ,且A≠ ,則 A;

          (2)如果 , ,則 .

          例1 寫出集合 的所有子集,并指出其中哪些是它的真子集.

          解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.

          【注意】(1)子集與真子集符號的方向。

          (2)易混符號

         、佟 ”與“ ”:元素與集合之間是屬于關(guān)系;集合與集合之間是包含關(guān)系。如 R,{1} {1,2,3}

         、趝0}與 :{0}是含有一個元素0的集合, 是不含任何元素的集合。

          如: {0}。不能寫成 ={0}, ∈{0}

          例2 見教材P8(解略)

          例3 判斷下列說法是否正確,如果不正確,請加以改正.

          (1) 表示空集;

          (2)空集是任何集合的真子集;

          (3) 不是 ;

          (4) 的所有子集是 ;

          (5)如果 且 ,那么B必是A的真子集;

          (6) 與 不能同時(shí)成立.

          解:(1) 不表示空集,它表示以空集為元素的集合,所以(1)不正確;

          (2)不正確.空集是任何非空集合的真子集;

          (3)不正確. 與 表示同一集合;

          (4)不正確. 的所有子集是 ;

          (5)正確

          (6)不正確.當(dāng) 時(shí), 與 能同時(shí)成立.

          例4 用適當(dāng)?shù)姆? , )填空:

          (1) ; ; ;

          (2) ; ;

          (3) ;

          (4)設(shè) , , ,則A B C.

          解:(1)0 0 ;

          (2) = , ;

          (3) , ∴ ;

          (4)A,B,C均表示所有奇數(shù)組成的集合,∴A=B=C.

          【練習(xí)】教材P9

          用適當(dāng)?shù)姆? , )填空:

          (1) ; (5) ;

          (2) ; (6) ;

          (3) ; (7) ;

          (4) ; (8) .

          解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .

          提問:見教材P9例子

          (二) 全集與補(bǔ)集

          1.補(bǔ)集:一般地,設(shè)S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集),記作 ,即

          A在S中的補(bǔ)集 可用右圖中陰影部分表示.

          性質(zhì): S( SA)=A

          如:(1)若S={1,2,3,4,5,6},A={1,3,5},則 SA={2,4,6};

          (2)若A={0},則 NA=N-;

          (3) RQ是無理數(shù)集。

          2.全集:

          如果集合S中含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集,全集通常用 表示.

          注: 是對于給定的全集 而言的,當(dāng)全集不同時(shí),補(bǔ)集也會不同.

          例如:若 ,當(dāng) 時(shí), ;當(dāng) 時(shí),則 .

          例5 設(shè)全集 , , ,判斷 與 之間的關(guān)系.

          練習(xí):見教材P10練習(xí)

          1.填空:

          , , ,那么 , .

          解: ,2.填空:

          (1)如果全集 ,那么N的補(bǔ)集 ;

          (2)如果全集, ,那么 的補(bǔ)集 ( )= .

          解:(1) ;(2) .

          (三)小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:

          1.五個概念(子集、集合相等、真子集、補(bǔ)集、全集,其中子集、補(bǔ)集為重點(diǎn))

          2.五條性質(zhì)

          (1)空集是任何集合的子集。Φ A

          (2)空集是任何非空集合的真子集。Φ A (A≠Φ)

          (3)任何一個集合是它本身的子集。

          (4)如果 , ,則 .

          (5) S( SA)=A

          3.兩組易混符號:(1)“ ”與“ ”:(2){0}與

          (四)課后作業(yè):見教材P10習(xí)題1.2

        高一數(shù)學(xué)教案必修一導(dǎo)教案文案4

          教學(xué)目標(biāo)

          (1)掌握一元二次不等式的解法;

          (2)知道一元二次不等式可以轉(zhuǎn)化為一元一次不等式組;

          (3)了解簡單的分式不等式的解法;

          (4)能利用二次函數(shù)與一元二次方程來求解一元二次不等式,理解它們?nèi)咧g的內(nèi)在聯(lián)系;

          (5)能夠進(jìn)行較簡單的分類討論,借助于數(shù)軸的直觀,求解簡單的含字母的一元二次不等式;

          (6)通過利用二次函數(shù)的圖象來求解一元二次不等式的解集,培養(yǎng)學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想;

          (7)通過研究函數(shù)、方程與不等式之間的內(nèi)在聯(lián)系,使學(xué)生認(rèn)識到事物是相互聯(lián)系、相互轉(zhuǎn)化的,樹立辨證的世界觀.

          教學(xué)重點(diǎn):一元二次不等式的解法;

          教學(xué)難點(diǎn):弄清一元二次不等式與一元二次方程、二次函數(shù)的關(guān)系.

          教與學(xué)過程設(shè)計(jì)

          第一課時(shí)

         、.設(shè)置情境

          問題:

          ①解方程

         、谧骱瘮(shù) 的圖像

         、劢獠坏仁

          【置疑】在解決上述三問題的基礎(chǔ)上分析,一元一次函數(shù)、一元一次方程、一元一次不等式之間的關(guān)系。能通過觀察一次函數(shù)的圖像求得一元一次不等式的解集嗎?

          【回答】函數(shù)圖像與x軸的交點(diǎn)橫坐標(biāo)為方程的根,不等式 的解集為函數(shù)圖像落在x軸上方部分對應(yīng)的橫坐標(biāo)。能。

          通過多媒體或其他載體給出下列表格。扼要講解怎樣通過觀察一次函數(shù)的圖像求得一元一次不等式的解集。注意色彩或彩色粉筆的運(yùn)用

          在這里我們發(fā)現(xiàn)一元一次方程,一次不等式與一次函數(shù)三者之間有著密切的聯(lián)系。利用這種聯(lián)系(集中反映在相應(yīng)一次函數(shù)的圖像上!)我們可以快速準(zhǔn)確地求出一元一次不等式的解集,類似地,我們能不能將現(xiàn)在要求解的一元二次不等式與二次函數(shù)聯(lián)系起來討論找到其求解方法呢?

         、.探索與研究

          我們現(xiàn)在就結(jié)合不等式 的求解來試一試。(師生共同活動用“特殊點(diǎn)法”而非課本上的“列表描點(diǎn)”的方法作出 的圖像,然后請一位程度中下的同學(xué)寫出相應(yīng)一元二次方程及一元二次不等式的解集。)

          【答】方程 的解集為

          不等式 的解集為

          【置疑】哪位同學(xué)還能寫出 的解法?(請一程度差的同學(xué)回答)

          【答】不等式 的解集為

          我們通過二次函數(shù) 的圖像,不僅求得了開始上課時(shí)我們還不知如何求解的那個第(5)小題 的解集,還求出了 的解集,可見利用二次函數(shù)的圖像來解一元二次不等式是個十分有效的方法。

          下面我們再對一般的一元二次不等式 與 來進(jìn)行討論。為簡便起見,暫只考慮 的情形。請同學(xué)們思考下列問題:

          如果相應(yīng)的一元二次方程 分別有兩實(shí)根、惟一實(shí)根,無實(shí)根的話,其對應(yīng)的二次函數(shù) 的圖像與x軸的位置關(guān)系如何?(提問程度較好的學(xué)生)

          【答】二次函數(shù) 的圖像開口向上且分別與x軸交于兩點(diǎn),一點(diǎn)及無交點(diǎn)。

          現(xiàn)在請同學(xué)們觀察表中的二次函數(shù)圖,并寫出相應(yīng)一元二次不等式的解集。(通過多媒體或其他載體給出以下表格)

          【答】 的解集依次是

          的解集依次是

          它是我們今后求解一元二次不等式的主要工具。應(yīng)盡快將表中的結(jié)果記住。其關(guān)鍵就是抓住相應(yīng)二次函數(shù) 的圖像。

          課本第19頁上的例1.例2.例3.它們均是求解二次項(xiàng)系數(shù) 的一元二次不等式,卻都沒有給出相應(yīng)二次函數(shù)的圖像。其解答過程雖很簡練,卻不太直觀。現(xiàn)在我們在課本預(yù)留的位置上分別給它們補(bǔ)上相應(yīng)二次函數(shù)圖像。

          (教師巡視,重點(diǎn)關(guān)注程度稍差的同學(xué)。)

         、.演練反饋

          1.解下列不等式:

          (1) (2)

          (3) (4)

          2.若代數(shù)式 的值恒取非負(fù)實(shí)數(shù),則實(shí)數(shù)x的取值范圍是 。

          3.解不等式

          (1) (2)

          參考答案:

          1.(1) ;(2) ;(3) ;(4)R

          2.

          3.(1)

          (2)當(dāng) 或 時(shí), ,當(dāng) 時(shí),當(dāng) 或 時(shí), 。

         、.總結(jié)提煉

          這節(jié)課我們學(xué)習(xí)了二次項(xiàng)系數(shù) 的一元二次不等式的解法,其關(guān)鍵是抓住相應(yīng)二次函數(shù)的圖像與x軸的交點(diǎn),再對照課本第39頁上表格中的結(jié)論給出所求一元二次不等式的解集。

          (五)、課時(shí)作業(yè)

          (P20.練習(xí)等3、4兩題)

          (六)、板書設(shè)計(jì)

          第二課時(shí)

          Ⅰ.設(shè)置情境

          (通過講評上一節(jié)課課后作業(yè)中出現(xiàn)的問題,復(fù)習(xí)利用“三個二次”間的關(guān)系求解一元二次不等式的主要操作過程。)

          上節(jié)課我們只討論了二次項(xiàng)系數(shù) 的一元二次不等式的求解問題?隙ㄓ型瑢W(xué)會問,那么二次項(xiàng)系數(shù) 的一元二次不等式如何來求解?咱們班上有誰能解答這個疑問呢?

         、.探索研究

          (學(xué)生議論紛紛.有的說仍然利用二次函數(shù)的圖像,有的說將二次項(xiàng)的系數(shù)變?yōu)檎龜?shù)后再求解,…….教師分別請持上述見解的學(xué)生代表進(jìn)一步說明各自的見解.)

          生甲:只要將課本第39頁上表中的二次函數(shù)圖像次依關(guān)于x軸翻轉(zhuǎn)變成開口向下的拋物線,再根據(jù)可得的圖像便可求得二次項(xiàng)系數(shù) 的一元二次不等式的解集.

          生乙:我覺得先在不等式兩邊同乘以-1將二次項(xiàng)系數(shù)變?yōu)檎龜?shù)后直接運(yùn)用上節(jié)課所學(xué)的方法求解就可以了.

          師:首先,這兩種見解都是合乎邏輯和可行的不過按前一見解來操作的話,同學(xué)們則需再記住一張類似于第39頁上的表格中的.各結(jié)論.這不但加重了記憶負(fù)擔(dān),而且兩表中的結(jié)論容易搞混導(dǎo)致錯誤.而按后一種見解來操作時(shí)則不存在這個問題,請同學(xué)們閱讀第19頁例4.

          (待學(xué)生閱讀完畢,教師再簡要講解一遍.)

          [知識運(yùn)用與解題研究]

          由此例可知,對于二次項(xiàng)系數(shù)的一元二次不等式是將其通過同解變形化為 的一元二次不等式來求解的,因此只要掌握了上一節(jié)課所學(xué)過的方法。我們就能求

          解任意一個一元二次不等式了,請同學(xué)們求解以下兩不等式.(調(diào)兩位程度中等的學(xué)生演板)

          (1) (2)

          (分別為課本P21習(xí)題1.5中1大題(2)、(4)兩小題.教師講評兩位同學(xué)的解答,注意糾正表述方面存在的問題.)

          訓(xùn)練二 可化為一元一次不等式組來求解的不等式.

          目前我們熟悉了利用“三個二次”間的關(guān)系求解一元二次不等式的方法雖然對任意一元二次不等式都適用,但具體操作起來還是讓我們感到有點(diǎn)麻煩.故在求解形如 (或 )的一元二次不等式時(shí)則根據(jù)(有理數(shù))乘(除)運(yùn)算的“符號法則”化為同學(xué)們更加熟悉的一元一次不等式組來求解.現(xiàn)在清同學(xué)們閱讀課本P20上關(guān)于不等式 求解的內(nèi)容并思考:原不等式的解集為什么是兩個一次不等式組解集的并集?(待學(xué)生閱讀完畢,請一程度較好,表達(dá)能力較強(qiáng)的學(xué)生回答該問題.)

          【答】因?yàn)闈M足不等式組 或 的x都能使原不等式 成立,且反過來也是對的,故原不等式的解集是兩個一元二次不等式組解集的并集.

          這個回答說明了原不等式的解集A與兩個一次不等式組解集的并集B是互為子集的關(guān)系,故它們必相等,現(xiàn)在請同學(xué)們求解以下各不等式.(調(diào)三位程度各異的學(xué)生演板.教師巡視,重點(diǎn)關(guān)注程度較差的學(xué)生).

          (1) [P20練習(xí)中第1大題]

          (2) [P20練習(xí)中第1大題]

          (3) [P20練習(xí)中第2大題]

          (老師扼要講評三位同學(xué)的解答.尤其要注意糾正表述方面存在的問題.然后講解P21例5).

          例5 解不等式

          因?yàn)?有理數(shù))積與商運(yùn)算的“符號法則”是一致的,故求解此類不等式時(shí),也可像求解 (或 )之類的不等式一樣,將其化為一元一次不等式組來求解。具體解答過程如下。

          解:(略)

          現(xiàn)在請同學(xué)們完成課本P21練習(xí)中第3、4兩大題。

          (等學(xué)生完成后教師給出答案,如有學(xué)生對不上答案,由其本人追查原因,自行糾正。)

          [訓(xùn)練三]用“符號法則”解不等式的復(fù)式訓(xùn)練。

          (通過多媒體或其他載體給出下列各題)

          1.不等式 與 的解集相同此說法對嗎?為什么[補(bǔ)充]

          2.解下列不等式:

          (1) [課本P22第8大題(2)小題]

          (2)   [補(bǔ)充]

          (3) [課本P43第4大題(1)小題]

          (4) [課本P43第5大題(1)小題]

          (5) [補(bǔ)充]

          (每題均先由學(xué)生說出解題思路,教師扼要板書求解過程)

          參考答案:

          1.不對。同 時(shí)前者無意義而后者卻能成立,所以它們的解集是不同的。

          2.(1)

          (2)原不等式可化為: ,即

          解集為 。

          (3)原不等式可化為

          解集為

          (4)原不等式可化為 或

          解集為

          (5)原不等式可化為: 或 解集為

          Ⅲ.總結(jié)提煉

          這節(jié)課我們重點(diǎn)講解了利用(有理數(shù))乘除法的符號法則求解左式為若干一次因式的積或商而右式為0的不等式。值得注意的是,這一方法對符合上述形狀的高次不等式也是有效的,同學(xué)們應(yīng)掌握好這一方法。

          (五)布置作業(yè)

          (P22.2(2)、(4);4;5;6。)

          (六)板書設(shè)計(jì)

        【高一數(shù)學(xué)教案必修一導(dǎo)教案文案】相關(guān)文章:

        高一數(shù)學(xué)教案06-20

        高一數(shù)學(xué)教案模板11-08

        人教版高一數(shù)學(xué)教案10-17

        高一數(shù)學(xué)教案(15篇)12-13

        高一數(shù)學(xué)教案15篇07-19

        高一地理必修一水循環(huán)教案12-20

        高一數(shù)學(xué)教案模板通用4篇11-08

        高一地理必修1教學(xué)設(shè)計(jì)03-22

        高一物理必修一教學(xué)工作計(jì)劃01-22