《分數(shù)的基本性質(zhì)》教案
作為一名默默奉獻的教育工作者,常常要根據(jù)教學(xué)需要編寫教案,借助教案可以有效提升自己的教學(xué)能力。那要怎么寫好教案呢?以下是小編整理的《分數(shù)的基本性質(zhì)》教案,歡迎大家分享。
《分數(shù)的基本性質(zhì)》教案1
設(shè)計說明
1.注重情境創(chuàng)設(shè),激發(fā)學(xué)生的學(xué)習(xí)興趣。
偉大的科學(xué)家愛因斯坦說過:“興趣是最好的老師!币簿褪钦f一個人一旦對某個事物產(chǎn)生了濃厚的興趣,就會主動地去求知、去探索、去實踐,并在求知、探索、實踐中產(chǎn)生愉快的情緒,因此教學(xué)時要重視興趣在智力開發(fā)中的作用。本課時的教學(xué)通過分餅這一故事情境來創(chuàng)設(shè)一種和諧、愉悅的氣氛,激發(fā)學(xué)生的學(xué)習(xí)興趣和探究新知的積極性。聽教師講完故事之后,學(xué)生能說出三個孩子分到的餅的大小是一樣的,并能非常流利地說出三個孩子分別分到每張餅的,,。接著教師提問設(shè)疑,導(dǎo)入新課。
2.突出學(xué)生的主體地位,在實踐操作中掌握新知。
學(xué)生是學(xué)習(xí)的主體,教師要時刻關(guān)注學(xué)生的主體地位。在探究分數(shù)的基本性質(zhì)的過程中,給予學(xué)生充分的學(xué)習(xí)空間,讓學(xué)生自主探究,經(jīng)歷折一折、畫一畫、剪一剪、比一比的過程,得出分數(shù)的基本性質(zhì),體驗成功的快樂。
課前準(zhǔn)備
教師準(zhǔn)備 PPT課件
學(xué)生準(zhǔn)備 若干張同樣大小的圓形紙片 彩筆
教學(xué)過程
⊙故事引入
1.教師講故事。
師:老師給大家講一個分餅的故事,你們想聽嗎?(想)三毛家有三兄弟,三兄弟都特別愛吃餅。一天,媽媽買回3張同樣大小的餅,準(zhǔn)備分給他們?nèi)值艹裕瑡寢屜劝训谝粡堬炂骄殖蓛煞,取出其中的一份給了大毛;二毛看見了,說:“太少了,我要吃兩份。”媽媽點點頭,把第二張餅平均分成四份,取出其中的兩份給了二毛;三毛連忙說:“我最小,我要比他們多吃一些,我要吃四份。”媽媽又點點頭,把第三張餅平均分成八份,取出其中的四份給了三毛。
大毛、二毛、三毛都滿意地笑了,媽媽也笑了。
設(shè)計意圖:借助故事給學(xué)生創(chuàng)設(shè)一個溫馨的'學(xué)習(xí)情境,自然導(dǎo)入新課,迅速吸引學(xué)生的注意力,激發(fā)學(xué)生的學(xué)習(xí)興趣。
2.探究驗證。
(1)提出猜想。
師:同學(xué)們,你們知道三兄弟之間到底誰分得的餅多嗎?
生:同樣多。
師:這只是大家的猜想,大家的猜想對不對呢?下面就讓我們當(dāng)一次小數(shù)學(xué)家,一起來驗證這個猜想吧!
(2)驗證猜想。
請同學(xué)們拿出課前準(zhǔn)備好的圓形紙片,模擬一下媽媽給三兄弟分餅的情境。
①折一折:把每張圓形紙片都看作單位“1”,分別把它們平均折成2份、4份、8份。
、谕恳煌浚涸谡酆玫膱A形紙片上分別把其中的1份、2份、4份涂上顏色,并用分數(shù)表示出來。
③剪一剪:把圓形紙片中的涂色部分剪下來。
、鼙纫槐龋喊鸭粝碌耐可糠种丿B,比一比。
師:通過比較,結(jié)果是怎樣的?
生:同樣大。
設(shè)計意圖:通過自主猜想、自主驗證、自主發(fā)現(xiàn),讓學(xué)生在折一折、涂一涂、剪一剪、比一比、說一說的實踐活動中把靜態(tài)的知識轉(zhuǎn)化為動態(tài)的求知過程,經(jīng)歷分數(shù)的基本性質(zhì)的形成過程。
3.揭示課題。
師:三兄弟分得的餅同樣多,那媽媽是用什么辦法來滿足他們的要求并且又分得那么公平的呢?這就是我們今天要學(xué)習(xí)的內(nèi)容:分數(shù)的基本性質(zhì)。(師板書,生齊讀課題)
⊙探究新知
1.觀察比較,探究規(guī)律。
(1)請同學(xué)們觀察,比較三個分數(shù)的大小。
師:三兄弟分得的餅同樣多,那么這三個分數(shù)的大小是怎樣的呢?(相等)
師:從這里我們可以知道,三兄弟分得的餅和剩下的餅同樣多,都是一張餅的一半。
(2)請同學(xué)們仔細觀察,這三個分數(shù)什么變了,什么沒變?(分子、分母變了,大小沒變)
師:這三個分數(shù)的分子、分母都不一樣,大小卻相等,這其中到底蘊藏著什么奧秘呢?
(課件出示:比較它們的分子和分母)
、購淖笸铱矗前凑帐裁匆(guī)律變化的?
②從右往左看,又是按照什么規(guī)律變化的?小組內(nèi)討論,交流一下你們的發(fā)現(xiàn)。
師:我們從左往右看,誰愿意說一說自己的發(fā)現(xiàn)?(分數(shù)的分子和分母同時乘相同的數(shù),分數(shù)的大小不變)
師:我們從右往左看,誰愿意說一說自己的發(fā)現(xiàn)?[分數(shù)的分子和分母同時除以相同的數(shù)(0除外),分數(shù)的大小不變]
師:你們能把這兩個發(fā)現(xiàn)合并成一句話嗎?[分數(shù)的分子和分母同時乘或者除以相同的數(shù)(0除外),分數(shù)的大小不變]
師:請同學(xué)們思考一下,這個數(shù)為什么不能是0?同桌之間討論。(因為在分數(shù)中,分母不能為0,并且在除法里,0不能作除數(shù),所以這個數(shù)不能是0)
(3)教師總結(jié)分數(shù)的基本性質(zhì)。(板書)
《分數(shù)的基本性質(zhì)》教案2
教學(xué)目標(biāo):使同學(xué)進一步熟悉分數(shù)的基本性質(zhì),能正確地應(yīng)用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)做分母(或分子),而大小不變的分數(shù)。
教學(xué)重點:應(yīng)用分數(shù)基本性質(zhì),把一個分數(shù)化成指定分母(或分子)做分母(或分子),而大小不變的分數(shù)
教學(xué)難點:能正確應(yīng)用分數(shù)基本性質(zhì)解決有關(guān)的問題。
教學(xué)課型:新授課
教具準(zhǔn)備:課件
教學(xué)過程:
一,遷移類推,導(dǎo)入新課
1,口答:什么是分數(shù)的基本性質(zhì)
2,在下面的括號內(nèi)填上適當(dāng)?shù)臄?shù)。 [課件1]
3/4=( )/8 1/2=( )/10 6/( )=2/7
2/3=( )/18=16/24 12/24=( )/( )
二,探求新知,提高能力
教學(xué)P108 。例 2: 把2/3和10/24化成分母是12而大小不變的分數(shù)。
提問:A,怎樣使2/3的分母變成12
B,根據(jù)分數(shù)的基本性質(zhì),要使分數(shù)2/3的大小不變,分子應(yīng)怎樣變化
板書: 2/3=2×4/3×4=8/12
C,怎樣使10/24的分母變成12
D,根據(jù)分數(shù)的基本性質(zhì),要使分數(shù)10/24的大小不變,分子應(yīng)怎樣變化
板書: 10/24=10÷2/24÷2=5/12
補充例題: 把2和3/7,5/8化成分母是它們的'最小公倍數(shù)而大小不變的分數(shù)。
分析: A,想想,它們的最小公倍數(shù)是幾
B,2是個整數(shù),怎樣化成分數(shù)呢 以多少做分母,分子又是多少呢
※ P108 。做一做1,2
三,鞏固練習(xí),強化提高
1,P109 。2
2,P109 。4
3,P110 。10
提問:這道題是在什么情況下份數(shù)的大小發(fā)生變化這個變化有沒有規(guī)律呢
述:一個分數(shù)的分母不變,分子擴大(或縮。┤舾杀叮謹(shù)大小也擴大(或縮。┫嗤谋稊(shù);假如分子不變,分母擴大(或縮。┤舾杀,分數(shù)大小反而縮小(或反而擴大)相同的倍數(shù)。即:一個分數(shù)的分母不變,分子乘以3,這個分數(shù)就擴大3倍;假如分子不變,分母除以5,這個分數(shù)就擴大5倍。
2,P110 。11
§ 要根據(jù)分數(shù)和除法關(guān)系,把分數(shù)的基本性質(zhì)和除法中商不變的性質(zhì)聯(lián)系起來考慮,進行填空。
3,P110 。考慮題
§ 先用5升水桶量出5升水,倒入7升水桶中;再用5升水桶量出5升水,倒?jié)M已裝入5升的7升水桶,這時5升水桶里剩下3升水;將7升水桶中的水倒掉,把5升水桶中的3升水倒入7升水桶中;再用5升水桶量出5升水,倒?jié)M已裝3升的7升水桶,剩下的就是1升水。
四,家作
P110 。7,8,9
《分數(shù)的基本性質(zhì)》教案3
教學(xué)目的:
理解分數(shù)的基本性質(zhì),并了解它與除法中商不變的規(guī)律之間的聯(lián)系。
2.理解和掌握分數(shù)的基本性質(zhì)。
3.較好實現(xiàn)知識教育與思想教育的有效結(jié)合。
教學(xué)難點:
理解和掌握分數(shù)的基本性質(zhì),并運用分數(shù)的基本性質(zhì)解決問題,進一步加深分數(shù)與除法之間的關(guān)系。
教學(xué)準(zhǔn)備:
板書有關(guān)習(xí)題的幻燈片。
教學(xué)過程:
一、復(fù)習(xí)
1.出示
在括號里填上適當(dāng)?shù)臄?shù):
指名說一說結(jié)果,并說一說你是根據(jù)什么填的?
二、課堂練習(xí):
1.自主練習(xí)第4題。
學(xué)生先獨立做,教師巡視,并個別指導(dǎo),集體訂正。
教師板書題目中的線段,指名讓學(xué)生板演。
在直線那些分數(shù)用同一個點表示是什么意思?(就是問哪幾個分數(shù)相等。)
怎樣找出相等的分數(shù)?
讓學(xué)生自己找。集體訂正是要求學(xué)生說一說你是根據(jù)什么找出相等的分數(shù)的?
然后要求學(xué)生在書上把這幾個相應(yīng)的點找出來。指名板演。
2.自主練習(xí)第5題。
先讓學(xué)生獨立做,教師巡視。個別指導(dǎo)。
指名說一說你的結(jié)果,并說一說你是根據(jù)什么填的`。重點要求學(xué)生說清楚利用分數(shù)的基本性質(zhì)來進行填空。
教師根據(jù)學(xué)生的回答選擇幾個題目進行板書。
3.自主練習(xí)第6題。
先讓學(xué)生獨立做。教師巡視并個別指導(dǎo)。注意差生中出現(xiàn)的問題。
集體訂正。指名說一說自己的計算過程和結(jié)果。
教師根據(jù)學(xué)生的回答選擇幾個題目進行板書。
4.自主練習(xí)第7題。
學(xué)生獨立做。教師要求有困難的學(xué)生分組討論,教師個別指導(dǎo)。
集體訂正。指名說一說自己的計算過程。教師注意要求學(xué)生說清楚計算的根據(jù)和理由。
5.自主練習(xí)第8題。
學(xué)生先獨立做。
集體訂正時,教師先要求學(xué)生說一說可以用哪些方法來比較這些分數(shù)的大。磕姆N方法最好?
《分數(shù)的基本性質(zhì)》教案4
教學(xué)目標(biāo):1,使同學(xué)理解分數(shù)的基本性質(zhì),并會應(yīng)用分數(shù)的基本性質(zhì)把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。
2,培養(yǎng)同學(xué)發(fā)現(xiàn)問題和解決問題的能力。滲透"事物之間是相互聯(lián)系"的辯證唯物主義觀點。
教學(xué)重點:掌握分數(shù)的基本的性質(zhì),能運用分數(shù)的基本性質(zhì)解決有關(guān)的問題。
教學(xué)難點:理解分數(shù)的基本的性質(zhì)。
教學(xué)課型:新授課
教具準(zhǔn)備:課件
教學(xué)過程:
一,復(fù)習(xí)鋪墊,準(zhǔn)備遷移 [課件1]
1,120÷30的商是多少 被除數(shù)和除數(shù)都擴大3倍,商是多少被除數(shù)和除數(shù)都縮小10倍呢
2,比較下列每組數(shù)的大小。
3/4( )3/5 15/20( )4/20
3,把下面的分數(shù)改寫成兩個數(shù)相除的形式。
2/3=( )÷( ) 5/8=( )÷( )
二,探索新知,發(fā)展智能
1,同學(xué)操作:將手中的紙圓片平均分成若干份。
2,反饋。
(1)提問:A,若要求剪下其中的一半,想想剪下的份數(shù)各自占圓的幾分之幾
B,雖然每個同學(xué)所剪的份數(shù)不同,但它們之間大小關(guān)系怎樣
板書: 1/2=2/4=3/6
C,觀察一下:這些分數(shù)的分子,分母變化有什么規(guī)律
。2)引導(dǎo)同學(xué)概括出分數(shù)的基本性質(zhì),并與前面的猜測相回應(yīng)。
(3)小結(jié):這里的`"相同的數(shù)",是不是任何數(shù)都可以呢
。愠猓
板書:分數(shù)的分子和分母同時乘上或者除以相同的數(shù)(0除外),分數(shù)的大小不變。
3,分數(shù)的基本性質(zhì)與商不變的性質(zhì)的比較。
提問:在除法里有商不變的性質(zhì),在分數(shù)里有分數(shù)的基本性質(zhì)。想一想:根據(jù)分數(shù)與除法的關(guān)系以和整數(shù)除法中商不變的性質(zhì),你能說明分數(shù)的基本性質(zhì)嗎
4,鞏固認識。
P109 。1
。2)說數(shù)接龍。
5/6=5+5/( )……
三,運用延伸,深化概念
1,要求大小不變。[課件2]
1/3=( )/6 10/15=( )/6 1/4=5/( )
2,下面分數(shù)中哪兩個分數(shù)相等 [課件3]
3/4 21/32 15/20 1/5 4/20
習(xí)后提問:A,依據(jù)是什么
B,3/4和1/5哪個大 你是怎么比較出來的
C,那么,從中你又有什么新發(fā)現(xiàn) 你的新發(fā)現(xiàn)是什么
四,全課總結(jié)
提問: A,這節(jié)課你學(xué)習(xí)了什么
B,運用分數(shù)的性質(zhì),你能做什么
C,本節(jié)課你還有哪些疑問 你還想從哪些方面去探索分數(shù)
的知識呢
五,家作
P109 。3,5,6
板書設(shè)計: 分數(shù)的基本性質(zhì)
1/2=2/4=3/6
分數(shù)的分子和分母同時乘上或者除以相同的數(shù)(0除外),分數(shù)的大小不變。
《分數(shù)的基本性質(zhì)》教案5
教學(xué)目標(biāo):
1.經(jīng)歷探索分數(shù)的基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
2.經(jīng)歷觀察、操作和討論等學(xué)習(xí)活動,并在探索過程中,能進行有條理的思考,能對分數(shù)的基本性質(zhì)作出簡要的、合理的說明。培養(yǎng)學(xué)生的觀察、比較、歸納、總結(jié)概括能力。能根據(jù)解決問題的需要,收集有用的信息進行歸納,發(fā)展學(xué)生的歸納、推理能力。
3.經(jīng)歷觀察、操作和討論等數(shù)學(xué)學(xué)習(xí)活動,使學(xué)生進一步體驗數(shù)學(xué)學(xué)習(xí)的樂趣。體驗數(shù)學(xué)與日常生活密切相關(guān)。
教學(xué)重點:
理解分數(shù)的基本性質(zhì)。
教學(xué)難點:
能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)
教學(xué)過程:
一、創(chuàng)設(shè)情境,激趣引新,
1、師:故事引入,揭示課題
同學(xué)們,你們聽說過阿凡提的故事嗎?今天老師這里有一個 老爺爺分地的數(shù)學(xué)故事,你們想聽嗎?(課件出示畫面)誰愿意把這個故事講給大家聽?指名讀故事(盡可能有感情地)
故事:有位老爺爺要把一塊地分給他的三個兒子。老大分到了這塊地的,老二分到了這塊地的 ,老三分到了這塊的。老大、老二覺得自己很吃虧,于是三人就大吵起來。剛好阿凡提路過,問清爭吵的原因后,哈哈大笑了起來,給他們講了幾句話,三兄弟就停止了爭吵。
2、師:你知道,阿凡提為什么會笑嗎?他對三兄弟講了哪些話?
3、學(xué)生猜想后暢所欲言。
4、同學(xué)們的想法真多!聰明的阿凡提是怎么讓三兄弟停止?fàn)幊车模?/p>
二、探究新知,解決問題
1、 動手操作、形象感知
(1)、三兄弟分的地真得一樣多嗎?你能用自己的方法證明嗎?
。2)學(xué)生獨立操作驗證。
方法1、涂、折、畫的方法
方法2、計算的方法。
方法3:商不變的性質(zhì)。
(3)觀察,說說你發(fā)現(xiàn)了什么?
2、出示做一做(1)
(1)請同學(xué)們認真觀察,同桌之間說一說這三個圖形的涂色部分分別表示什么意義,并用分數(shù)表示出來。
(3)觀察,說說你發(fā)現(xiàn)了什么? = = (課件揭示)
。4)交流:你還有什么發(fā)現(xiàn)?
分數(shù)的分子和分母變化了,分數(shù)的大小不變。
分數(shù)的分子和分母都乘以相同的數(shù),分數(shù)的大小不變。
。ò鍟憾汲艘韵嗤臄(shù))(課件演示)
3、出示做一做圖片(2),學(xué)生獨立填寫分數(shù)。
。1)說說你是怎么想的?
(2)交流,你發(fā)現(xiàn)了什么?(分數(shù)的'分子和分母都除以相同的數(shù),分數(shù)的大小不變。)(板書:都除以相同的數(shù))
4、想一想:引導(dǎo)歸納分數(shù)的基本性質(zhì)
。1)從剛才的演示中,你發(fā)現(xiàn)了什么?
板書:分數(shù)的分子、分母都乘以或除以相同的數(shù),分數(shù)的大小不變。
。2)補充分數(shù)的基本性質(zhì):課件出示兩個式子,問學(xué)生對不對?講解關(guān)鍵詞都、
相同的數(shù)、0除外。 都可以換成哪個詞?同時。
板書:分數(shù)的分子、分母都乘以或除以相同的數(shù)(0除外),分數(shù)的大小不變。
。3)揭題:分數(shù)的基本性質(zhì)。先讓學(xué)生在課本中找出分數(shù)基本性質(zhì)中的關(guān)鍵字詞并做上記號(畫起來或圈出來),要求關(guān)鍵的字詞要重讀。(課件揭示)
5、梳理知識,溝通聯(lián)系:分數(shù)基本性質(zhì)與學(xué)過的什么知識有聯(lián)系?你能舉例說說嗎?
師:我們學(xué)習(xí)了分數(shù)與除法的關(guān)系,知道分數(shù)可以寫成除法的形式。現(xiàn)在我們把商不變性質(zhì),分數(shù)基本性質(zhì),分數(shù)與除法的關(guān)系這三者聯(lián)系起來,你發(fā)現(xiàn)了什么?(生舉例驗證,如:3/4=34=(33)(43)=912=9 /12)(課件揭示)
師:其實,數(shù)學(xué)知識中有許多地方是像商不變性質(zhì)和分數(shù)基本性質(zhì)一樣相互溝通的,同學(xué)們要學(xué)會靈活運用,才能做到舉一反三,觸類旁通,取得事半功倍的效果。你們想挑戰(zhàn)嗎?
6、趣味比拼,挑戰(zhàn)智慧
給你們一分鐘時間,寫出幾個相等的分數(shù),看誰寫得既對又多。
交流匯報后,提問:如果給你時間,你還能不能寫,到底能寫幾個?
三、多層練習(xí),鞏固深化。
1、考考你(第43頁試一試和練一練第2題)。
2/3=( )/18 6/21=2/( )
3/5 =21/( ) 27/39=( )/13
5/8=20/( ) 24/42=( )/7
4/( )=48/60 8/12=( )/( )
2、涂一涂,填一填。(練一練第1題)
3、請你當(dāng)法官,要求說出理由.(手勢表示。)
。1)分數(shù)的分子、分母都乘或除以相同的數(shù),分數(shù)的大小不變。( )
。2)把 15/20的分子縮小5倍,分母也同時縮小5倍,分數(shù)的大 小不變。( )
(3)3/4的分子乘3,分母除以3,分數(shù)的大小不變。( )
。4) 10/24=102/242=103/243 ( )
(5)把3/5的分子加上4,要使分數(shù)的大小不變,分母也要加上4。( )
(6)3/4=30/4 0=30/4 0 ()
4、找一找:課件出示信息:請幫小熊和小山羊找回大小相等的分數(shù)。
5、(1)把5/6和1/4都化成分母是12而大小不變的分數(shù);
。2)把2/3和3/4都化成分子是6而大小不變的分數(shù) 6、2/5分子增加2,要使分數(shù)的大小不變,分母應(yīng)該增加幾?你是怎樣想的?
四、拾撿碩果,拓展延伸。
1、看到同學(xué)們這么自信的回答,老師就知道今天大家的收獲不少,誰來說說這節(jié)課你都收獲了哪些東西?
。ɑ蛴梅謹(shù)表示這節(jié)課的評價,快樂和遺憾各占多少?)
2、學(xué)了這節(jié)課,現(xiàn)在你知道阿凡提為什么會笑,如果你是阿凡提,你會對三兄弟說些什么?從這個故事中,你還知道了什么?師總結(jié):看來學(xué)好數(shù)學(xué)還是很重要的!祝賀同學(xué)們都跟阿凡提一樣聰明。ǐI上有節(jié)奏的掌聲)
3、拓展延伸
師:最后,阿凡提為了考考同學(xué)們,他特意挑選了一道題,要同學(xué)們選擇來完成,有信心去完成嗎?
比一比:三杯同樣多的牛奶,小明喝了其中一杯牛奶的2/3,小紅喝了另一杯牛奶的5/6,小芳喝了最后一杯的9/12,三人誰喝得最多?誰喝得最少?
五、動腦筋退場
讓學(xué)生拿出課前發(fā)的分數(shù)紙。要求學(xué)生看清手中的分數(shù)。與1/2相等的,報出自己的分數(shù)后站在教室的前面,與2/3相等的站在教室的后面,與3/4相等的站在教室的左邊, 與4/5相等的站在教室的左邊。
《分數(shù)的基本性質(zhì)》教案6
教學(xué)內(nèi)容:人教版五年級數(shù)學(xué)下冊57頁內(nèi)容。
教學(xué)目標(biāo):
知識與能力:使學(xué)生理解和掌握分數(shù)的基本性質(zhì),并能應(yīng)用這一規(guī)律解決簡單的實際問題。
過程與方法:能在觀察、比較、猜想、驗證等學(xué)習(xí)活動的過程中,有條理、有根據(jù)地思考、探究問題,培養(yǎng)學(xué)生分析和抽象概括的能力。
情感態(tài)度價值觀:體驗數(shù)學(xué)驗證的思想,培養(yǎng)樂于探究的學(xué)習(xí)態(tài)度。
教學(xué)重點:使學(xué)生理解和掌握分數(shù)的基本性質(zhì)。
教學(xué)難點:運用分數(shù)的基本性質(zhì)解決相關(guān)的問題。
教學(xué)準(zhǔn)備:多媒體課件、正方形紙、直尺、彩筆
教學(xué)過程:
一、鋪墊孕伏,溫故遷移
1.比一比:看誰算得又對又快。
2.說一說:商不變的性質(zhì)是什么?
3.想一想:分數(shù)與除法有怎樣的關(guān)系?
4.猜一猜:除法中有商不變的規(guī)律,分數(shù)中是否具有類似的規(guī)律?
二、設(shè)疑激趣,探究新知
。ㄒ唬┕适录と,引出分數(shù)。
說出自己從故事中聽到的分數(shù)。
。ǘ┬〗M合作,直觀感知。
1.折一折:拿出三張同樣大小的正方形紙,分別用對折的方法平均分成2份、4份、8份。
2.畫一畫:畫出折痕所在的直線。
3.涂一涂:
(1)給平均分成2份的正方形紙的其中的1份涂上顏色。
。2)給平均分成4份的正方形紙的其中的2份涂上顏色。
。3)給平均分成8份的正方形紙的其中的4份涂上顏色。
4.比一比:比較3張正方形紙涂色部分的大小。
5.議一議:和同伴說說自己的想法。
。ǘ┯^察比較,探究規(guī)律。
1.這三個分數(shù)的分子、分母都不同,分數(shù)的大小卻相等。你能找出它們之間的變化規(guī)律嗎?請同學(xué)們四人一組,討論這個問題。
2.匯報交流。
3.啟發(fā)點撥。
通過從左往右觀察、比較、分析,你發(fā)現(xiàn)了什么?
引導(dǎo)學(xué)生小結(jié)得出:分數(shù)的分子、分母同時乘相同的數(shù),分數(shù)的大小不變。
那么,從右往左看呢?
讓學(xué)生再次歸納:分數(shù)的分子、分母同時除以相同的數(shù),分數(shù)的`大小不變。
4.歸納小結(jié):引導(dǎo)學(xué)生概括出分數(shù)的基本性質(zhì)。
5.啟發(fā)思考:這里的“相同的數(shù)”可以是任何數(shù)嗎?(補充板書:0除外),你能舉例說明嗎?
(三)獨立嘗試,運用規(guī)律。
1.學(xué)生獨立思考,完成例2。
2.反饋交流,訂正點撥。
3.小結(jié):我們可以運用分數(shù)的基本性質(zhì)把一個分數(shù)化成分母不同但大小不變的分數(shù)。
三、達標(biāo)檢測,內(nèi)化提升(見《達標(biāo)測試題》)
四、總結(jié)收獲,評價激勵
這節(jié)課你有什么收獲?你對自己的哪些表現(xiàn)比較滿意?
板書設(shè)計:
分數(shù)的基本性質(zhì)
例1:
分數(shù)的分子、分母同時乘或者除以相同的數(shù)(0除外),分數(shù)的大小不變。
例2:
《分數(shù)的基本性質(zhì)》教案7
教學(xué)目的
1.使學(xué)生理解和掌握分數(shù)的基本性質(zhì).
2.培養(yǎng)學(xué)生觀察、思考、動手操作和自學(xué)能力.
教學(xué)過程
一、導(dǎo)入新課.
故事引入:中秋節(jié),媽媽買了一個大西瓜,分給哥哥這個西瓜的 ,(板書: ).
分給組組這個西瓜的 ,(板書: ).分給弟弟這個西瓜的 ,(板書: ).哥哥、姐姐、弟弟三個人,他們誰吃的西瓜多呢?(學(xué)生答案不一)
到底誰回答得對呢?上完這節(jié)課你們一定能得到準(zhǔn)確的答案.
二、新課.
1.實際操作列等式證實兩組分數(shù),每組分數(shù)大小相等.
。1)教師講解:請同學(xué)們拿出三個大小相等的圓來,分別用陰影部分表示每個圓的
。ò鍟 )
。2)教師提問:比較一下陰影部分的大小,結(jié)果怎樣?
陰影部分相等,說明這三個分數(shù)怎樣?
。S著學(xué)生回答老師將三個分數(shù)用“=”連接)
。3)教師拿出畫著三條數(shù)軸的小黑板,講:誰能在三條數(shù)軸上標(biāo)出 ?
。4)教師提問:這三個分數(shù)在數(shù)軸上所表示的長度怎樣?這又說明了什么?
。S著學(xué)生回答老師在三個分數(shù)間用“=”連接)
2.初步概括分數(shù)基本性質(zhì).
。1)觀察兩個等式,每個等式的三個分數(shù)什么變了?什么沒變?
。2)同學(xué)們從左到右觀察第一個等式,想一下,這三個分數(shù)的'分子、分母怎樣變化才保證了分數(shù)的大小不變.
板書:
。3)誰能用一句話把這個變化規(guī)律敘述出來?
板書:分數(shù)的分子、分母都乘上同一個數(shù),分數(shù)大小不變.
(4)從左到右觀察第二個等式,這三個分數(shù)的分子、分母發(fā)生了怎樣的變化,才保證了分數(shù)大小不變呢?
板書:
。5)問:誰能用一句話把這個變化規(guī)律敘述出來?
誰能用一句話把這兩個變化規(guī)律敘述出來?
(板書:或除以)
3.完整分數(shù)基本性質(zhì).
填空:
教師追問:第三題( )里可以填多少個數(shù)?第4題呢?
為什么3、4題( )里可以填無數(shù)個數(shù)?
。 )里填任何數(shù)都行嗎?哪個數(shù)不行?(板書:零除外)
這里為什么必須“零除外”?
教師小結(jié):我們總結(jié)的分數(shù)的這個變化規(guī)律就是“分數(shù)的基本性質(zhì).
。ò鍟n題:分數(shù)基本性質(zhì))
4.深入理解分數(shù)基本性質(zhì).
教師提問:分數(shù)的基本性質(zhì)里哪幾個詞比較重要?
為什么“都”和“相同”很重要?
為什么“分數(shù)大小不變”也很重要?
為什么“零除外”也很重要?
三、課堂練習(xí).
1.用直線把相等的分數(shù)連接起來.
2.把下列分數(shù)按要求分類.
和 相等的分數(shù):
和 相等的分數(shù):
3.判斷下列各題的對錯,并說明理由.
4.填空并說出理由.
5.集體練習(xí).
四、照應(yīng)課前談話.
問:現(xiàn)在誰知道哥哥、姐姐、弟弟三個人,誰吃的西瓜多呢?
板書:
五、課堂小結(jié).
這節(jié)課你有什么收獲?
六、布置作業(yè).
1.指出下面每組中的兩個分數(shù)是相等的還是不相等的.
2.在下面的括號里填上適當(dāng)?shù)臄?shù).
《分數(shù)的基本性質(zhì)》教案8
教學(xué)內(nèi)容:省編義務(wù)教材第十冊第91—93頁例1、例2。
教學(xué)目標(biāo):
1、體驗分數(shù)基本性質(zhì)的探究過程,建構(gòu)分數(shù)基本性質(zhì)的意義內(nèi)涵。
2、溝通分數(shù)的基本性質(zhì)和商不變性質(zhì)的內(nèi)在聯(lián)系,實現(xiàn)新知化歸舊知,并與后面約分和通分的學(xué)習(xí)作好前期孕伏。
3、通過猜想、驗證、得出結(jié)論這充分自主的數(shù)學(xué)活動,促進學(xué)生學(xué)習(xí)經(jīng)驗的不斷積累。
課前準(zhǔn)備:
課件,學(xué)具袋一個(線段圖紙、長方形、繩子)、探究紙一張
教學(xué)過程:
1.創(chuàng)設(shè)情境,作好鋪墊
出示四分之二后說:老師的信封里有一道算式,這道算式和這個分數(shù)的值相等,你們猜這是一道怎樣的算式?(除法算式。)你能具體猜出是怎樣一道除法算式。(2÷4)
為什么你會猜是一道除法算式?(分數(shù)與除法有密切的關(guān)系)
除法與分數(shù)有什么樣的關(guān)系?
。ê诎迳铣鍪荆罕怀龜(shù)÷除數(shù)=)
根據(jù)2÷4這道除法算式,每人都試著說一道與它相等的除法算式。(根據(jù)學(xué)生板書:1÷23÷64÷85÷10100÷……)
為什么你認為100÷與2÷4的商是一樣的?(2和4同時乘以50商不變,這是根據(jù)商不變性質(zhì))
什么是商不變性質(zhì)?(出示:被除數(shù)和除數(shù)同時乘以或除以相同的數(shù)(0除外),商不變。)
2、遷移猜想,引疑激思
分數(shù)與除法有這樣的關(guān)系,除法中有商不變性質(zhì),那你們猜分數(shù)中有可能存在著類似的性質(zhì)嗎?(有)你能具體說一說?
交流得出:分子和分母同時乘以或除以相同的數(shù)(0除外),分數(shù)的大小不變。
3、自主探究,驗證猜想
也許你們的猜想是正確的,科學(xué)家的發(fā)現(xiàn)往往也是從猜想開始的,但是只有通過驗證得到的.結(jié)論才是科學(xué)的,這節(jié)課我們也學(xué)著來做一名小數(shù)學(xué)家。
(1)初步驗證
、俪鍪荆禾骄繄蟾鎲,讓學(xué)生讀要求:
a.同桌合作:兩人各寫一個分數(shù),將它的分子、分母同時乘以或除以一個相同的數(shù),算出新的分數(shù)。
b.選擇合理的方法驗證所前后兩個分數(shù)是否相等。
c.填寫好探究報告單。
選擇探究的
分 數(shù)
分子和分母同時乘以或除以
一個相同的數(shù)
得到的
分 數(shù)
選擇的分數(shù)與得到的分數(shù)是否相等
相等( ) 不相等( )
猜想是否成立
成立( ) 不成立( )
選擇的分數(shù)與得到的分數(shù)是否相等相等()不相等()
猜想是否成立成立()不成立()
。候炞C方法可用折紙、畫線段圖、計算、實物……
、趯W(xué)生合作進行探究。
、廴嘟涣鳎
a、同桌一起上來,拿好探究報告單及驗證材料等。
b、兩人合作,一人講解、一人驗證演示。
c、得到結(jié)論:
。ń涣2-3組后)問全班同學(xué):你們得到怎樣的結(jié)論?(一致通過)
剛才我們通過集體努力用不同的方法、不同的分數(shù)驗證了我們的猜想是成立的。這就是分數(shù)的基本性質(zhì),板書:分數(shù)的基本性質(zhì)。(齊讀)
4、議論爭辯,頓悟創(chuàng)新
讀一讀分數(shù)的基本性質(zhì),你認為哪些字詞是比較重要的。這里的“相同的數(shù)”指的是什么數(shù)?為什么要“0除外”?
5、訓(xùn)練技能,激勵發(fā)展
剛才我們通過自己的猜想、驗證得出的這條規(guī)律,學(xué)習(xí)了分數(shù)的基本性質(zhì),到底有什么作用呢?讓我們一起來體會一下。
(1)練習(xí)明目的
根據(jù)分數(shù)的基本性質(zhì),填空。
1/2=()/8=5/()=()/6=7/()
采取師生對數(shù)的游戲形式進行,如先由教師出分子,再讓學(xué)生對出分母,也可以先由學(xué)生出分母,再讓教師對出分子。
(2)慧眼辯是非
。3)變式練思維
把下面每組中的異分母分數(shù)化成同分母分數(shù)。
A、3/4,4/7B、5/6,4/9C、3/5,5/8
分數(shù)的分母相同了,有什么作用?揭示學(xué)習(xí)分數(shù)的基本性質(zhì)的重要性,鼓勵學(xué)生學(xué)好、用好。
。4)競賽促智慧
①在1—9九個數(shù)字中任選一些數(shù)字組成大小相等的分數(shù)。
可以有:1/2=3/6=4/81/3=2/62/3=4/6這三組。
并讓學(xué)生繼續(xù)往下說,從而得出:任何一個分數(shù)與之相等的分數(shù)有無數(shù)個。
、诔鍪荆1/a=7/b(說明:a、b都不是0。)
搶答:a=2、a=3、a=6、b=28、b=56時a或b的值。
連貫口答:a=1、2、3、4、5……時b的值。(滲透正比例)
討論:a、b之間的關(guān)系是怎樣的?為什么會存在這樣的關(guān)系?依據(jù)是什么?
6、回顧,掌握方法
今天這節(jié)課我們學(xué)習(xí)的分數(shù)的基本性質(zhì),回憶一下我們是怎樣學(xué)習(xí)的?
學(xué)生可能會回答:
生1:我們是根據(jù)“商不變的性質(zhì)”來學(xué)習(xí)“分數(shù)的基本性質(zhì)”的。
生2:我們是通過猜測的方法學(xué)的。
生3:我們還用驗證的方法學(xué)習(xí)。
……
結(jié)果語:是的,這節(jié)課,我們利用除法和分數(shù)的關(guān)系以及商不變性質(zhì),猜想出分數(shù)的基本性質(zhì),并且進行了驗證與運用,其實數(shù)學(xué)知識都是相互聯(lián)系的,學(xué)習(xí)數(shù)學(xué)就要學(xué)會利用已有知識,去學(xué)習(xí)新的知識,這就是學(xué)習(xí)數(shù)學(xué)的一把金鑰匙。老師把這把金鑰匙送給每一位同學(xué)。
《分數(shù)的基本性質(zhì)》教案9
教學(xué)前的思考:
一、一則Flash動畫故事引入:從前有座山,山里有座廟,廟里有個老和尚和一個小和尚,哦!不對,是三個小和尚。小和尚最喜歡吃老和尚烙的餅了。有一天,老和尚做了三塊一樣大小的餅,想給小和尚吃,還沒給,小和尚就叫開了。矮和尚說:“我要一塊!”高和尚說:“我要兩塊!”胖和尚說:“我不要多,只要四塊!”老和尚聽了二話沒說,立刻把一塊餅平均分成四塊,取其中的一塊給了矮和尚;把第二塊餅平均分成八塊,取其中的兩塊給了高和尚;把第三塊餅平均分成十六塊,取其中的四塊給了胖和尚,一一滿足了他們的要求。同學(xué)們,你知道哪個和尚吃的多嗎?---教師播放這則故事為學(xué)生提供“猜想”素材!安孪搿Ⅱ炞C”不但是科學(xué)研究的方法,也是一種很好的數(shù)學(xué)學(xué)習(xí)方法。由此我聯(lián)想到“性質(zhì)”的學(xué)習(xí)過程是否也可以讓學(xué)生在猜想、驗證中主動生成。
二、學(xué)生動手操作,用事實說明,作好新知鋪墊:在揭題前,我設(shè)計了讓學(xué)生動手操作的方法,用三個同樣大小的圓折紙、涂色,來調(diào)動學(xué)生的多種感觀,充分感知數(shù)學(xué)事實,引導(dǎo)學(xué)生觀察、思考,激發(fā)學(xué)生的求知欲,活躍課堂氣氛,為“驗證”“性質(zhì)”作好鋪墊。
三、得出結(jié)論后,滲透“形式與實質(zhì)”的辯證觀點:揭示“性質(zhì)”后,教師讓學(xué)生回顧故事內(nèi)容,驗證“猜想”到底哪個和尚吃的多,從形式上看矮和尚吃的多,但比較的事實說明吃的一樣多。教師再一次列舉生活中的事例說明“形式與實質(zhì)”的辯證觀點。
教學(xué)設(shè)計:
一 故事提供“猜想”素材:Flash動畫故事引入.(教師出示課件)
師:今天老師很高興和同學(xué)們在一起共同學(xué)習(xí),同學(xué)們心情怎樣?
生:高興!
師: 老師給大家?guī)砹艘粋禮物,請同學(xué)們仔細欣賞。(教師出示Flash動畫故事,學(xué)生欣賞。同時教師提出欣賞要求,)
師:(欣賞后)同學(xué)們,你知道哪個和尚吃的多嗎?
生1:胖和尚吃的多。
生2:矮和尚吃的多。
……
師:到底誰回答得對呢?上完這節(jié)課你們一定能得到準(zhǔn)確的答案.(通過欣賞為學(xué)生提供素材,設(shè)懸念,留給學(xué)生獨立思考的空間)
二 用事實“驗證”,完整性質(zhì)。
1.實際操作列等式證實分數(shù)大小相等。
師:請同學(xué)們以小組為單位,拿出三個大小相等的圓來,分別用陰影部分表示每個圓的
(教師觀察,學(xué)生小組合作,有平均分的,有涂色的,小組成員配合默契)
師:比較一下陰影部分的大小,結(jié)果怎樣?陰影部分相等,說明這三個分數(shù)怎樣?
生:陰影部分的大小相等。
師:陰影部分相等說明這三個分數(shù)怎樣?
生:三個分數(shù)相等。
(隨著學(xué)生的回答,老師將板書的三個分數(shù)用“=”連接。)
2.觀察課件證實分數(shù)大小相等。
師:(出示課件)老師有三個同樣大小的長方形,誰能用分數(shù)表示出黃色部分呢?
師:這三個分數(shù)所表示的長度怎樣?這又說明了什么?
(隨著學(xué)生回答老師在三個分數(shù)間用“=”連接。)
3.初步概括分數(shù)基本性質(zhì).
師:仔細觀察兩個等式,每個等式的三個分數(shù)什么變了?什么沒變?
生:第一個等式中的三個分數(shù)分子、分母都變了,但分數(shù)的大小沒變。(師進行評價)
師:同學(xué)們從左到右觀察第一個等式,想一下,這三個分數(shù)的分子、分母怎樣變化才保證了分數(shù)的大小不變的?
(教師請同學(xué)們小組討論,學(xué)生各抒己見,爭論不休,氣氛活躍。)
師:誰能用一句話把這個變化規(guī)律敘述出來呢?(師指名口述)
生1:從左往右看,分數(shù)的分子、分母同時擴大了,也就是分子分母都乘了一個相同的數(shù),但三個分數(shù)的大小沒有變。(生2進行了補充)
師:你們觀察的真仔細!請大家給點掌聲好嗎?
(學(xué)生掌聲起,激情高長,課堂教學(xué)充滿活力。)
師:(出示課件)請看大屏幕,老師是這樣敘述的“分數(shù)的`分子、分母都乘上同一個數(shù),分數(shù)大小不變”。
師:同學(xué)們從左到右仔細觀察第二個等式,這三個分數(shù)的分子、分母發(fā)生了怎樣的變化,才保證了分數(shù)大小不變呢?誰能用一句話把這個變化規(guī)律敘述出來?
(小組討論后,同法讓學(xué)生小結(jié)規(guī)律,并請同學(xué)給予評價,讓學(xué)生抒發(fā)自己的見解,體現(xiàn)課堂教學(xué)的民主化。然后教師在課件中補充“或除以”三個字。)
4、完整分數(shù)基本性質(zhì):
師:(出示課件)請同學(xué)們填空:
(教師請一位會操作鼠標(biāo)的同學(xué)在課件中填空)
師:第3題( )里可以填多少個數(shù)?第4題呢?
生:可以填無數(shù)個。
師:( )里填任何數(shù)都行嗎?哪個數(shù)不行?(學(xué)生交流后老師指名回答)
生:不能填零。
師:為什么不能填零?
生:分數(shù)的分母不能為零。
(教師對學(xué)生的回答進行評價)
師:所以我們總結(jié)的這條規(guī)律必須加上一個條件“零除外”
(教師在課件中填上“零除外”三個紅色的字,以便引起學(xué)生的注意。)
師:這個變化規(guī)律就是“分數(shù)的基本性質(zhì)”。(指名照課件主讀出性質(zhì))
三 深入理解分數(shù)基本性質(zhì)
1.學(xué)生自學(xué),深入理解性質(zhì)。
師:請同學(xué)們把書翻到108頁,自讀分數(shù)的基本性質(zhì)。
師歸問:分數(shù)的基本性質(zhì)里哪幾個詞比較重要?為什么“都”和“相同”很重要?為什么“分數(shù)大小不變”也很重要?為什么“零除外”也很重要?
生:因為都乘上或除以相同的數(shù)(0除外),分數(shù)的大小才不會變化。(同學(xué)評價)
2.學(xué)生獨立完成做一做1。(完成后小組內(nèi)互相評價)
3.找出與
相等的分數(shù):
(教師出示課件,請一位同學(xué)在課件中連線,教師進行評價)
4.請同學(xué)們自學(xué)并完成例2、(教師巡視,個別進行輔導(dǎo))
……
四 照應(yīng)Flash動畫故事,滲透“形式與實質(zhì)”的辯證觀點
教師在黑板上出示自制的三個同樣大小的圓餅
師:現(xiàn)在誰知道三個和尚,誰吃的多呢?(學(xué)生爭先恐后的想回答老師提出的問題)
生:三個和沿吃的一樣多。
師:同學(xué)們以后思考問題一定要多動腦筋,了解實質(zhì)后才能得出正確答案,我們不能從形式上看著事物去做出判斷。
……
五 課堂小結(jié):這節(jié)課你有什么收獲?(學(xué)生板書課題)
教學(xué)后的感悟:
1.教學(xué)的整個過程是學(xué)生親自驗證的過程,通過“驗證”學(xué)生感受了數(shù)學(xué)的嚴謹性。設(shè)計以“猜想--判斷--觀察--驗證--概括--深化--提高”的環(huán)節(jié),把知識的形成過程展現(xiàn)在學(xué)生的面前,使學(xué)生在掌握分數(shù)的基本性質(zhì)的同時,感知到數(shù)學(xué)知識的形成過程,在這一過程中注意滲透學(xué)生自學(xué)方法、解決問題的策略、體會數(shù)學(xué)知識與生活的緊密聯(lián)系,同時教給學(xué)生學(xué)會學(xué)習(xí),學(xué)會思考的方法。在師生共同協(xié)作的過程中,達到課堂教學(xué)方法的最優(yōu)化,提高了課堂教學(xué)效益。
2.猜想素材有利于激發(fā)學(xué)生主動學(xué)習(xí)的興趣和熱情,有利于學(xué)生思維的碰撞,開啟了學(xué)生發(fā)自內(nèi)心的探索學(xué)習(xí)。
3.教學(xué)中取舍教材、取舍手段,著眼于學(xué)生的學(xué)習(xí)。教學(xué)中既運用了信息技術(shù),又把傳統(tǒng)教學(xué)手段有機地結(jié)合,讓資源充分、有效地發(fā)揮作用,優(yōu)化教師的教學(xué)手段,提高課堂教學(xué)效率。
《分數(shù)的基本性質(zhì)》教案10
教材簡析:
分數(shù)的基本性質(zhì)是以分數(shù)大小相等這一概念為基礎(chǔ)的。因為分數(shù)與整數(shù)不同,兩個分數(shù)的大小相等,并不意味著兩個分數(shù)的分子、分母分別相同。教學(xué)時,可引導(dǎo)學(xué)生觀察一組相等分數(shù)的分子、分母是按什么規(guī)律變化的,再結(jié)合分數(shù)的意義歸納出分數(shù)的基本性質(zhì)。由于分數(shù)和整數(shù)除法存在著內(nèi)在聯(lián)系,所以分數(shù)的基本性質(zhì)也可以利用整數(shù)除法中商不變的性質(zhì)來說明。
設(shè)計理念:
分數(shù)的基本性質(zhì)是約分和通分的基礎(chǔ),而約分、通分又是分數(shù)四則運算的重要基礎(chǔ),因此,理解分數(shù)的基本性質(zhì)顯得尤為重要。因此我把學(xué)生的學(xué)習(xí)定位在自主建構(gòu)知識的基礎(chǔ)上,建立了猜想試驗分析合情推理探究創(chuàng)造的教學(xué)模式。
在課堂上,我先通過故事讓學(xué)生進入情境,然后讓學(xué)生去猜想、觀察、試驗、感悟,進而得出結(jié)論。當(dāng)學(xué)生得出分數(shù)的分子、分母都乘或除以同一個數(shù),分數(shù)的`大小不變之后,再結(jié)合商不變的性質(zhì)深入理解,把知識融會貫通。整個教學(xué)過程注重讓學(xué)生經(jīng)歷了探索知識的過程,使學(xué)生知道這些知識是如何被發(fā)現(xiàn)的,結(jié)論是如何獲得的,體現(xiàn)了方法比知識更重要這一新的教學(xué)價值觀,構(gòu)建了新的教學(xué)模式。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:學(xué)生是學(xué)習(xí)數(shù)學(xué)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者。這就要求我們在教學(xué)活動中應(yīng)該為學(xué)生提供大量數(shù)學(xué)活動的機會,讓學(xué)生去探索、交流、發(fā)現(xiàn),從而真正落實學(xué)生的主體地位。
教學(xué)目標(biāo):
1、使學(xué)生理解和掌握分數(shù)的基本性質(zhì),能應(yīng)用性質(zhì)解決一些簡單問題.
2、培養(yǎng)學(xué)生觀察、分析、思考和抽象、概括的能力.
3、滲透形式與實質(zhì)的辯證唯物主義觀點,使學(xué)生受到思想教育.
教學(xué)重點:
使學(xué)生理解和掌握分數(shù)的基本性質(zhì),培養(yǎng)學(xué)生的抽象、概括的能力。
教學(xué)難點:
讓學(xué)生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),以及應(yīng)用它解決相關(guān)的問題。
教具準(zhǔn)備:
每生三張正方形紙
教學(xué)方法:
演示法、觀察法、討論法、交流法。
《分數(shù)的基本性質(zhì)》教案11
教學(xué)目標(biāo)
(一)理解和掌握分數(shù)的基本性質(zhì)。
(二)能運用分數(shù)的基本性質(zhì)把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
(三)培養(yǎng)學(xué)生觀察、分析和抽象概括的能力,滲透事物是相互聯(lián)系,發(fā)展變化的辯證唯物主義觀點。
教學(xué)重點和難點
(一)理解和掌握分數(shù)的基本性質(zhì)。
(二)歸納分數(shù)的基本性質(zhì),運用性質(zhì)轉(zhuǎn)化分數(shù)。
教學(xué)用具
教具:投影片,三張相同的長方形紙,一面為白色,另一面分別給
學(xué)具:每位同學(xué)準(zhǔn)備三張相同的長方形紙片。
教學(xué)過程設(shè)計
(一)復(fù)習(xí)準(zhǔn)備
1.口答:(投影片)
根據(jù) 120÷30=4,不用計算直接說出結(jié)果:
(120×3)÷(30×3)=( );(120÷10)÷(30÷10)=( )。
2.說一說依據(jù)什么可以不用計算直接得出商的?
3.說出商不變的性質(zhì)。
教師:除法有商不變性質(zhì),分數(shù)與除法又有關(guān)系,分數(shù)有沒有類似的性質(zhì)呢?下面就來研究這個問題。
(二)學(xué)習(xí)新課
1.分數(shù)基本性質(zhì)。
(1)教師取出一張長方形白紙,說明這為單位“1”,再取出同樣的兩張白紙,重疊放在一起請學(xué)生觀察,問:三張紙重疊后完全重合,說明什么?(三個單位“ 1”同樣大)教師把三張紙分貼在黑板上。
教師請同學(xué)取出自己準(zhǔn)備的三張長方形紙,并比一比是不是同樣大。
教師:請分別把它們平均分成2份;4份,6份(折出來),并分別給其中的1份,2份和3份涂上顏色或畫上陰影。然后把涂了顏色的部分用分數(shù)表示出來。
學(xué)生口答后,老師把黑板上的紙片翻面,露出涂了色的一面,板書:
教師:請比較這三個分數(shù)的大小?
你根據(jù)什么說這三個分數(shù)相等?
學(xué)生口答后老師用等號連結(jié)上面三個分數(shù)。
(2)教師:這幾個分數(shù)的分子和分母都不相同,但三個分數(shù)的大小是相等的,下面我們來研究在保持分數(shù)大小不變的情況下,分子分母的變化有沒有什么規(guī)律?
請同學(xué)觀察,思考和討論。投影出思考題:
如何?
結(jié)果如何?
變,那么分子,分母同時乘以4,乘以5,乘以6呢?規(guī)律是什么?
學(xué)生口答后,教師小結(jié)并板書:分數(shù)的分子和分母同時乘以相同的數(shù),分數(shù)大小不變。(留出“或者除以”的空位。)
的變化規(guī)律是什么?(學(xué)生小組討論后匯報)教師板書:
教師:試說一說這時分子、分母的變化規(guī)律?
學(xué)生口答后老師小結(jié):分數(shù)的分子和分母同時除以相同的數(shù),分數(shù)大小不變。板書補出“除以”。
教師:想一想,分數(shù)的分子、分母都乘以或除以0可以嗎?為什么?(不行。)
(3)請根據(jù)上面的研究,說一說你發(fā)現(xiàn)了什么規(guī)律?請概括地說一說。
學(xué)生口述分數(shù)基本性質(zhì)的內(nèi)容,老師把板書補充完整。
教師:這就是分數(shù)的`基本性質(zhì),是這節(jié)課研究的問題。板書出課題:分數(shù)基本性質(zhì)。
請學(xué)生打開書讀兩遍。
教師:想一想,如何用整數(shù)除法中商不變的性質(zhì)說明分數(shù)基本性質(zhì)?(舉例說明)
用學(xué)生自己的例題說明后,用投影片再說明:
口答填空:(投影片)
2.把一個分數(shù)化成大小相等,而分子或分母是指定數(shù)的分數(shù)。
分子應(yīng)怎樣變化?誰隨著誰變?
化?誰隨著誰變?
教師:上面兩個分數(shù)的變化依據(jù)是什么?
(2)口答練習(xí):(學(xué)生口答,老師板書。)
教師:利用分數(shù)基本性質(zhì),可以把分數(shù)化成大小相等而分子或分母是指定數(shù)的分數(shù)。
(三)鞏固反饋
1.口答:(投影片)
2.在括號里填上“=”或“≠”。(投影)
3.在( )里填上適當(dāng)?shù)臄?shù)。(投影)
4.判斷正誤,并說明理由。
(四)課堂總結(jié)與課后作業(yè)
1.分數(shù)基本性質(zhì)。
2.把分數(shù)化成大小相同而分子或分母是指定數(shù)的分數(shù)的方法。
3.作業(yè):課本108頁練習(xí)二十三,1,2,4,5。
課堂教學(xué)設(shè)計說明
分數(shù)基本性質(zhì)是在分數(shù)大小不變的前提下研究分子、分母的變化規(guī)律。所以在教學(xué)過程中,抓住“變化”作為主線,設(shè)計思考題引導(dǎo)學(xué)生觀察、對比、分析,使學(xué)生在變化中找出規(guī)律、概括出分數(shù)的基本性質(zhì)。安排例2,是讓學(xué)生運用規(guī)律使分數(shù)產(chǎn)生變化。這樣,從兩方面方面加深學(xué)生對分數(shù)基本性質(zhì)的理解。
在學(xué)生掌握了分數(shù)基本性質(zhì)后,安排他們舉例討論,以溝通分數(shù)基本性質(zhì)和商不變性質(zhì)之間的內(nèi)在聯(lián)系,便于學(xué)生能把新舊知識融為一體。
在整個學(xué)習(xí)過程中都是學(xué)生活動為主,這樣有利于培養(yǎng)學(xué)生觀察、分析和抽象概括的能力。
新課教學(xué)分為兩部分。
第一部分學(xué)習(xí)分數(shù)基本性質(zhì)。分三層,通過學(xué)生活動,學(xué)生從直觀上認識到分子、分母不相同的分數(shù)有可能相等;研究分子、分母的變化規(guī)律;概括分數(shù)基本性質(zhì),并用商不變性質(zhì)來說明。
第二部分是應(yīng)用分數(shù)基本性質(zhì),使分數(shù)按要求進行變化。分兩層,根據(jù)分母需要,確定分子、分母需要擴大或縮小的倍數(shù);根據(jù)分子需要,確定分子、分母需要擴大或縮小的倍數(shù)。
板書設(shè)計
《分數(shù)的基本性質(zhì)》教案12
一、 教材
根據(jù)課程標(biāo)準(zhǔn)的要求,基于對教學(xué)內(nèi)容的把握,本課時我確定的教學(xué)目標(biāo)為:
1.理解和掌握分數(shù)的基本性質(zhì),并會應(yīng)用分數(shù)的基本性質(zhì)把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。
2.通過猜想、驗證、歸納、總結(jié)等活動,經(jīng)歷分數(shù)的基本性質(zhì)的探究過程,體會舉具體事例、數(shù)形結(jié)合的思考方法,感受抽象、推理的基本數(shù)學(xué)思想。
3.在自主探究與合作交流的過程中,感受數(shù)學(xué)知識之間的聯(lián)系,激發(fā)學(xué)生探究學(xué)習(xí)的興趣。我確定本目標(biāo)的依據(jù)有三點:
一是基于對課程標(biāo)準(zhǔn)的理解。
《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(20xx年版)》在學(xué)段目標(biāo)的第二學(xué)段指出學(xué)生要“在觀察、實驗、猜想、驗證等活動中,發(fā)展合情推理能力,能進行有條理的思考,能比較清楚地表達自己的思考過程”。
二是基于對教材的認識。
《分數(shù)的基本性質(zhì)》是在學(xué)生學(xué)習(xí)了分數(shù)的意義、分數(shù)與除法的關(guān)系、商不變性質(zhì)等知識的基礎(chǔ)上進行教學(xué)的,它是以后學(xué)習(xí)約分、通分的依據(jù),而約分和通分則是分數(shù)四則混合運算的重要基礎(chǔ),因此,理解分數(shù)的基本性質(zhì)顯得尤為重要。
三是基于對學(xué)情的認識。
作為舊課新上,如何讓學(xué)生在重新學(xué)習(xí)的過程中對學(xué)習(xí)活動任然保持濃厚興趣,從探究活動中得到新的發(fā)展,上出數(shù)學(xué)味,上出新意,我在思考。本節(jié)課常規(guī)的是創(chuàng)設(shè)情境,在情景中提煉出等式,最終形成性質(zhì)。因此在教學(xué)時,我沒有從具體的情境入手,而是從思考一連串的問題開始,通過實驗、猜想、驗證、結(jié)論,從等式的驗證上升到規(guī)律的發(fā)現(xiàn)和歸納,經(jīng)歷定律由特殊到一般的歸納推理過程,在這個過程中積累數(shù)學(xué)經(jīng)驗、滲透數(shù)學(xué)思想、掌握數(shù)學(xué)方法。
據(jù)此,
我將教學(xué)重點確定為:通過猜想、驗證、歸納、總結(jié)等活動,讓學(xué)生經(jīng)歷分數(shù)的基本性質(zhì)的探究過程。教學(xué)難點確定:理解和掌握分數(shù)的基本性質(zhì)。
二、教法
課程標(biāo)準(zhǔn)指出教師要關(guān)注已有的知識經(jīng)驗及認知水平,發(fā)揮組織者、引導(dǎo)者、合作者的作用。本節(jié)課我綜合采用了引導(dǎo)發(fā)現(xiàn)法、啟發(fā)式教學(xué)法,直觀演示法,組織學(xué)生經(jīng)歷實驗、猜測、驗證、得出結(jié)論的過程。
三、說學(xué)法
學(xué)生是學(xué)習(xí)的主體,學(xué)生的學(xué)習(xí)活動應(yīng)該是生動的、活潑的、富有個性的,因此,在本節(jié)課教學(xué)中,我主要采用觀察發(fā)現(xiàn)法、動手操作法、舉例驗證法,引導(dǎo)學(xué)生靜心傾聽、認真操作、積極思考、大膽表達,通過動手實踐、自主探究、合作交流等多種方式獲得廣泛的數(shù)學(xué)活動經(jīng)驗。
四、說教學(xué)過程
本著讓學(xué)生
“主動參與、樂于探究、學(xué)有所得”的理念,結(jié)合五年級學(xué)生的認知水平和年齡特點,結(jié)合教材的編排意圖和學(xué)情特點,我設(shè)計了如下教學(xué)環(huán)節(jié):1. 聯(lián)系舊知,質(zhì)疑引思。 2.自主操作,驗證猜想 3.知識應(yīng)用,鞏固提高4.回顧總結(jié),完善認知。
環(huán)節(jié)一:聯(lián)系舊知,質(zhì)疑引思。
“疑是思之始,學(xué)之端!彼伎歼@樣一連串的'問題,目的是喚醒學(xué)生已有的知識經(jīng)驗;迅速地點燃孩子們求知欲望;引發(fā)學(xué)生的數(shù)學(xué)思考,為主動探究新知識積聚動力。
環(huán)節(jié)二:操作體驗,概括規(guī)律
1.觀察發(fā)現(xiàn),提出猜想。
通過找與1/2相等的分數(shù),思考證明方法,觀察等式,發(fā)現(xiàn)規(guī)律,于是提出猜想
2.舉例操作,驗證猜想。
課標(biāo)指出“學(xué)生應(yīng)當(dāng)有足夠的時間和空間經(jīng)歷觀察、實驗、猜測、推理、驗證等活動的過程”。本節(jié)課驗證環(huán)節(jié),將“分子分母怎樣變才使得分數(shù)的大小不變”設(shè)定為研究的關(guān)鍵點,然后圍繞這一關(guān)鍵點讓學(xué)生展開了操作、感悟、分析、推理等一系列的數(shù)學(xué)活動,引導(dǎo)學(xué)生通過比較全面的大量的例子來驗證結(jié)論,在觀察、實驗、猜測、驗證的活動中發(fā)展合情推理能力。讓學(xué)生試著用數(shù)學(xué)的思維去思考,體驗如何運用新舊知識間的聯(lián)系和遷移去分析和解決問題,培養(yǎng)學(xué)生好學(xué)善思的良好品質(zhì)。
3.概括性質(zhì),深化理解
通過觀察算式,經(jīng)歷由特殊到一般的歸納推理,發(fā)現(xiàn)分數(shù)的基本性質(zhì)。
4.運用規(guī)律,完成例2
嘗試運用發(fā)現(xiàn)的規(guī)律,解決問題。
環(huán)節(jié)三:知識應(yīng)用,鞏固提高
在有層次的練習(xí)過程中,形成技能,發(fā)展學(xué)生的智力,達成本節(jié)課的教學(xué)目標(biāo),突出重點,突破難點。本節(jié)課,我設(shè)計了兩個層次的練習(xí)。一是點對點的基礎(chǔ)練習(xí),二是靈活運用所學(xué)知識解決生活中實際問題。
環(huán)節(jié)四:回顧總結(jié),完善認知
通過回顧,梳理所學(xué)的知識,提煉數(shù)學(xué)方法,聯(lián)系新舊知識,使學(xué)生的認知結(jié)構(gòu)得到補充和完善。
有人說的好,教育是一門永無止境的藝術(shù),我知道這節(jié)課還有很多不足,懇切的希望各位能給予我更多的寶貴建議,有了你們的幫助我一定收獲更多,成長更快。
《分數(shù)的基本性質(zhì)》教案13
教學(xué)內(nèi)容:
人教版《義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)》五年級(下冊)75—78頁。
設(shè)計思路:
《分數(shù)的基本性質(zhì)》是人教版《義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)》五年級(下冊)第四單元《分數(shù)的意義和性質(zhì)》的第三節(jié)內(nèi)容。它是在學(xué)生已掌握了商不變的性質(zhì)之后,并在已有應(yīng)用經(jīng)驗的基礎(chǔ)上進行學(xué)習(xí)的。這節(jié)課的教學(xué)重點是理解和掌握分數(shù)的基本性質(zhì),并能運用分數(shù)的基本性質(zhì)解決實際問題。教材共安排了兩道例題、“做一做1、2題”等。教學(xué)中創(chuàng)設(shè)學(xué)生熟悉的情景,組織學(xué)生自主活動,進行主動探究,體會知識的形成過程,體驗學(xué)習(xí)的快樂。通過鼓勵學(xué)生大膽猜想,讓學(xué)生動手操作、觀察、分析、比較、討論、合作交流等探究活動,圍繞牽動教學(xué)主線的“猜想”,開展自主、探究式學(xué)習(xí),以驗證自己的猜想,發(fā)現(xiàn)、總結(jié)、概括出“分數(shù)的基本性質(zhì)” ,并應(yīng)用于實踐解決簡單的實際問題,做到學(xué)以致用,發(fā)展學(xué)生思維,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,感受學(xué)習(xí)數(shù)學(xué)的樂趣,培養(yǎng)學(xué)生樂于探究的人生態(tài)度。
教學(xué)目標(biāo):
1.通過教學(xué)理解和掌握分數(shù)的基本性質(zhì),能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù),再應(yīng)用這一規(guī)律解決簡單的實際問題。
2.引導(dǎo)學(xué)生在參與觀察、比較、猜想、驗證等學(xué)習(xí)活動過程中,有條件、有根據(jù)的思考、探究問題,培養(yǎng)學(xué)生的抽象概括能力。
3.滲透初步的辯證唯物主義思想教育,使學(xué)生收到數(shù)學(xué)思想方法的熏陶,培養(yǎng)探究的學(xué)習(xí)態(tài)度。
教學(xué)重點:
理解和掌握分數(shù)的基本性質(zhì)。
教學(xué)難點:
應(yīng)用分數(shù)的基本性質(zhì)解決實際問題。
教學(xué)方法:
直觀演示法、討論法等。
學(xué)法:
合作交流、自主探究。
教學(xué)準(zhǔn)備:
每位學(xué)生準(zhǔn)備三張同樣大小的正方形(或長方形)的紙片;教師:長方形(或正方形)的紙片、PPT課件等。
教學(xué)過程:
一.創(chuàng)設(shè)情景,激發(fā)興趣
。ㄕn件出示)1.120÷30的'商是多少?被除數(shù)和除數(shù)都擴大3倍,商是多少?被除數(shù)和除數(shù)都縮小10倍呢?
2.說一說:(1)商不變的性質(zhì)是什么?(2)分數(shù)與除法的關(guān)系是什么?
( )( )( )3.填空:1÷2= ( ) (1×2)÷(2×2)=( )( )
二.大膽猜想,揭示課題
學(xué)生大膽猜想:在除法里有商不變的性質(zhì),在分數(shù)里會不會有類似的性質(zhì)存在呢?(生答:有。┻@個性質(zhì)是什么呢?
隨著學(xué)生的回答,教師板書課題:分數(shù)的基本性質(zhì)。
三 .探索研究,驗證猜想
1. 動手操作,驗證性質(zhì)。
(1)學(xué)生拿出三張同樣大小的正方形(或長方形)紙片,分別平均分成4份、8份、12
份,并分別給其中的1份、2份、3份涂上色,把涂色部分用分數(shù)表示出來。 圖(略)????引導(dǎo)學(xué)生觀察、思考:你發(fā)現(xiàn)了什么?
(2)小組合作:①觀察、分析、比較在組內(nèi)交流你的發(fā)現(xiàn)。
②合作交流,各抒己見。
123③選代表全班匯報、交流,師相機板書:4812
123(3)合作討論: 為什么相等? 4812
、僖孕〗M為單位思考討論:(引導(dǎo))它們的分子、分母各是按照什么規(guī)律變化的? ②觀察它們的分子、分母的變化規(guī)律,在組內(nèi)用自己的話說一說。
2.分組匯報,歸納性質(zhì)。
a.從左往右看,分子、分母的變化規(guī)律怎樣?選擇一組學(xué)生根據(jù)探究報告,到黑板上邊說邊用箭頭表示出分子、分母的變化過程。
(根據(jù)學(xué)生回答
b.從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?
(根據(jù)學(xué)生的回答)
c.有與這一組探究的分數(shù)不一樣的嗎?你們得出的規(guī)律是什么?
d.綜合剛才的探究,你發(fā)現(xiàn)什么規(guī)律?
。4)引導(dǎo)學(xué)生概括出分數(shù)的基本性質(zhì),回應(yīng)猜想。
對這句話你還有什么要補充的?(補充“零除外”)
討論:為什么性質(zhì)中要規(guī)定“零除外”?
。5)齊讀分數(shù)的基本性質(zhì)。在分數(shù)的基本性質(zhì)中,你認為要提醒大家注意些什么?(同時、相同的數(shù)、0除外)。為什么?你能舉例說明嗎?教師則根據(jù)學(xué)生回答,在相應(yīng)的字下面點上著重號。
師生共同讀出黑板上板書的分數(shù)基本性質(zhì)(要求關(guān)鍵的字詞要重讀)。
3.慧眼掃描(下列的式子是否正確?為什么?)(課件出示)
33×263(1) ==(生: 的分子與分母沒有同時乘以2,分數(shù)的大小改變。) 555555÷515(2) = = (生: 的分子除以5,分母除以6,除數(shù)的大小不同,分數(shù)1212÷6212
的大小改變。) 11×331==(生:的分子乘以3,而分母除以3,沒有同時乘或除以,1212÷3412(3)
分數(shù)的大小改變。) 22×x2x(4)==(生:x在這里代表任意數(shù),當(dāng)x=0時,分數(shù)無意義。) 55×x5x
四.回歸書本,探源獲知
1.瀏覽課本第75—78頁的內(nèi)容。
2.看了書,你又有什么收獲?還有什么疑問嗎?(指名匯報、交流)
3.分數(shù)的基本性質(zhì)與商不變性質(zhì)的比較。
(1)小組合作:討論分數(shù)的基本性質(zhì)與商不變性質(zhì)的異同。
(2)小組內(nèi)交流。
(3)選代表全班交流、匯報。
(4)小結(jié)歸納:分數(shù)的基本性質(zhì)與商不變性質(zhì)內(nèi)容相同,只是名稱不同罷了!
4.自主學(xué)習(xí)并完成例2,請二名學(xué)生說出思路。
五.鞏固深化,拓展思維(PPT演示文稿出示下列題目)
1.想一想,填一填。
33×( )988÷( )() 55×( )( )2424÷( )3
學(xué)生口答后,要求說出是怎樣想的?
2.在下面( )內(nèi)填上合適的數(shù)。
要求:后二題采取師生對出數(shù)的游戲形式進行,如先由教師出分子,再讓學(xué)生對出分母,也可以先由學(xué)生出分母,再讓教師對出分子。
3.思維訓(xùn)練(選擇你喜愛的一道題完成)
3(1)的分子加上6,要使分數(shù)的大小不變,分母應(yīng)加上多少? 5
(2)1/a=7/b(a、b是自然數(shù),且不為0),當(dāng)a=1,2,3,4??時,b分別等于幾?
討論:a與b之間的關(guān)系是怎樣的?為什么會存在這樣的關(guān)系?依據(jù)是什么?
。3)把6/20、70/100、45/50、1/2和4/5化成分母相同而大小不變的分數(shù)。
思考:分數(shù)的分母相同了,有什么作用?揭示學(xué)習(xí)分數(shù)的基本性質(zhì)的重要性,鼓勵學(xué)生學(xué)好、用好。
六.全課小結(jié)
本節(jié)課你收獲了什么?同桌交流分享你獲取知識的快樂!(匯報全班交流)
七.布置作業(yè)
P77—78練習(xí)十四第1、5、8題。
教學(xué)反思
“分數(shù)的基本性質(zhì)”是在學(xué)生已掌握了商不變的性質(zhì)之后,并在已有應(yīng)用經(jīng)驗的基礎(chǔ)上進行學(xué)習(xí)的。這節(jié)課用“猜想——驗證——反思”的方式學(xué)習(xí)分數(shù)的基本性質(zhì),是學(xué)生在大問題背景下的一種研究性學(xué)習(xí)。這不僅對學(xué)生提出了挑戰(zhàn),而且對教師也提出了挑戰(zhàn)。教學(xué)中創(chuàng)設(shè)學(xué)生熟悉的情景,組織學(xué)生自主活動,進行主動探究,體會知識的形成過程,體驗學(xué)習(xí)的快樂。通過鼓勵學(xué)生大膽猜想,讓學(xué)生動手操作、觀察、分析、比較、討論、合作交流等探究活動,圍繞牽動教學(xué)主線的“猜想”,開展自主、探究式學(xué)習(xí),以驗證自己的猜想,發(fā)現(xiàn)、總結(jié)、概括出“分數(shù)的基本性質(zhì)” ,并應(yīng)用于實踐解決簡單的實際問題,做到學(xué)以致用,發(fā)展學(xué)生思維,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,感受學(xué)習(xí)數(shù)學(xué)的樂趣,培養(yǎng)學(xué)生樂于探究的人生態(tài)度。
本節(jié)課教學(xué)設(shè)計突出的特點是學(xué)法的設(shè)計。從“創(chuàng)設(shè)情境、激發(fā)興趣;大膽猜想、揭示課題;探索研究、驗證猜想;回歸書本、探源獲知;鞏固深化、拓展思維”到“全課小結(jié)”每一個環(huán)節(jié)完全是為學(xué)生自主探究、合作交流學(xué)習(xí)而設(shè)計的。通過教學(xué)總結(jié)了自己的得與失如下:
1. 創(chuàng)設(shè)情境,可以更好地激發(fā)學(xué)生的學(xué)習(xí)興趣,學(xué)生有了這樣的學(xué)習(xí)興趣,我想這節(jié)課已經(jīng)成功了一半。因為興趣是最好的老師!
2.學(xué)生在操作中大膽猜想。
新課標(biāo)積極倡導(dǎo)學(xué)生 “主動參與、樂于探究、勤于思考”,以培養(yǎng)學(xué)生獲取知識、分析和解決問題的能力。因此我由學(xué)生的猜想入手,可以最大限度的調(diào)動學(xué)生“驗證自己猜想”的積極性和主動性,接下來通過學(xué)生:動手操作、觀察、比較、分析、討論、合作交流、探究等活動都是為了驗證學(xué)生自己的猜想,這些環(huán)節(jié)充分發(fā)揮了學(xué)生的主動性、積極性,從而凸顯學(xué)生在學(xué)習(xí)中的主體地位。教師在教學(xué)過程成為學(xué)生學(xué)習(xí)的引導(dǎo)者、支持者、服務(wù)者。同時創(chuàng)設(shè)猜想的情境,學(xué)生通過動手操作、觀察、比較、分析、討論、合作交流的探究方式來經(jīng)歷數(shù)學(xué),獲得感性經(jīng)驗,進而理解所學(xué)知識,完成知識創(chuàng)造過程。并且也為學(xué)生多彩的思維、創(chuàng)設(shè)良好的平臺,由于學(xué)生的經(jīng)歷不同,認識問題的角度不同,促使他們解決問題的策略多樣化,使生生、師生評價在價值觀上都得到了發(fā)展。
3.學(xué)生在自主探索中科學(xué)驗證。
《分數(shù)的基本性質(zhì)》教案14
教學(xué)目的
1.使學(xué)生理解和掌握分數(shù)的基本性質(zhì),能應(yīng)用“性質(zhì)”解決一些簡單問題.
2.培養(yǎng)學(xué)生觀察、分析、思考和抽象、概括的能力.
3.滲透“形式與實質(zhì)”的辯證唯物主義觀點,使學(xué)生受到思想教育.
教學(xué)過程
一、談話.
我們已經(jīng)學(xué)習(xí)了分數(shù)的意義,認識了真分數(shù)、假分數(shù)和帶分數(shù),掌握了假分數(shù)與帶分數(shù)、
整數(shù)的互化方法.今天我們繼續(xù)學(xué)習(xí)分數(shù)的有關(guān)知識.
二、導(dǎo)入新課.
(一)教學(xué)例1.
出示例1:用分數(shù)表示下面各圖中的陰影部分,并比較它們的大。
1.分別出示每一個圓,讓學(xué)生說出表示陰影部分的分數(shù).
。1)把這個圓看做單位1,陰影部分占圓的幾分之幾?
。2)同樣大的圓,陰影部分占圓的幾分之幾?
。3)同樣大的圓,陰影部分用分數(shù)表示是多少?
2.觀察比較陰影部分的大。
(1)從4 幅圖上看,陰影部分的大小怎么樣?(陰影部分的大小相等.)
。2)陰影部分的大小相等,可以用等號連接起來.(把圖上陰影部分畫上等號)
3.分析、推導(dǎo)出表示陰影部分的分數(shù)的大小也相等:
(1)4幅圖中陰影部分的大小相等.那么,表示這4 幅圖的4個分數(shù)的大小怎么樣呢?
。ㄟ@4個分數(shù)的大小也相等)
。2)它們的大小相等,也可以用等號連接起來(把4個分數(shù)用等號連起來).
4.觀察、分析相等的分數(shù)之間有什么關(guān)系?
(1)觀察 轉(zhuǎn)化成 , 的分子、分母發(fā)生了什么變化?
。 的分子、分母都乘上了2或 的分子、分母都擴大了 2倍.)
(2)觀察
(二)教學(xué)例2.
出示例2:比較 的大。
1.出示圖:我們在三條同樣的數(shù)軸上分別表示這三個分數(shù).
2.觀察數(shù)軸上三個點的位置,比較三個分數(shù)的大。
從數(shù)軸上可以看出:
3.觀察、分析形式不同而大小相等的三個分數(shù)之間有什么聯(lián)系和變化規(guī)律.
。1)這三個分數(shù)從形式上看不同,但是它們實質(zhì)上又都相等.
。ń處煱鍟 )
(2)你們分析一下, 、 各用什么樣的方法就都可以轉(zhuǎn)化成 了呢?
三、抽象概括出分數(shù)的基本性質(zhì).
1.觀察前面兩道例題,你們從中發(fā)現(xiàn)了什么變化規(guī)律?
“分數(shù)的分子分母都乘上或都除以相同的數(shù)(零除外),分數(shù)的大小不變.”(板書)
2.為什么要“零除外”?
3.教師小結(jié):這就是今天這節(jié)課我們學(xué)習(xí)的內(nèi)容:“分數(shù)的基本性質(zhì)”
。ò鍟骸盎拘再|(zhì)”)
4.誰再說一遍什么叫分數(shù)的基本性質(zhì)?
教師板書字母公式:
四、應(yīng)用分數(shù)基本性質(zhì)解決實際問題.
1.請同學(xué)們回憶,分數(shù)的基本性質(zhì)和我們以前學(xué)過的`哪一個知識相類似?
。ê统ㄖ猩滩蛔兊男再|(zhì)相類似.)
。1)商不變的性質(zhì)是什么?
。ǔㄖ校怀龜(shù)和除數(shù)都乘上或都除以相同的數(shù)(零除外),商的大小不變.)
。2)應(yīng)用商不變的性質(zhì)可以進行除法簡便運算,可以解決小數(shù)除法的運算.
2.分數(shù)基本性質(zhì)的應(yīng)用:
我們學(xué)習(xí)分數(shù)的基本性質(zhì)目的是加深對分數(shù)的認識,更主要的是應(yīng)用這一知識去解
決一些有關(guān)分數(shù)的問題.
3.教學(xué)例3.
例3 把 和 化成分母是12而大小不變的分數(shù).
板書:
教師提問:
。1) ?為什么?依據(jù)什么道理?
。 ,因為分母2乘上6等于12,要使分數(shù)的大小不變,分子1也要乘上6.所以, )
(2)這個“6”是怎么想出來的?
(這樣想:2×?=12,2ד6”=12,也可以看12是2的幾倍:12÷2=6,那么分子1也擴大6倍)
。3) ?為什么?依據(jù)的什么道理?
。 ,因為分母24除以2等于12,要使分數(shù)的大小不變,分子10也得除以2,所以, )
。4)這個“2”是怎么想出來的?
(這樣想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也應(yīng)是新分子的2倍,所以新的分子應(yīng)是10÷2=5)
五、課堂練習(xí).
1.把下面各分數(shù)化成分母是60,而大小不變的分數(shù).
2.把下面的分數(shù)化成分子是1,而大小不變的分數(shù).
3.在( )里填上適當(dāng)?shù)臄?shù).
4. 的分子增加2,要使分數(shù)的大小不變,分母應(yīng)該增加幾?你是怎樣想的?
5.請同學(xué)們想出與 相等的分數(shù).
規(guī)律:這個分數(shù)的值是 ,然后只要按自然數(shù)的順序說出分子是1、2、3、4、……分母是分子的4倍為:4、8、12、16……無數(shù)個.
六、課堂總結(jié).
今天這節(jié)課我們學(xué)習(xí)了什么知識?懂得了一個什么道理?分數(shù)的基本性質(zhì)是什么?這是學(xué)習(xí)分數(shù)四則運算的基礎(chǔ),一定要掌握好.
七、課后作業(yè).
1.指出下面每組中的兩個分數(shù)是相等的還是不相等的.
2.在下面的括號里填上適當(dāng)?shù)臄?shù).
《分數(shù)的基本性質(zhì)》教案15
教學(xué)目標(biāo):
1.經(jīng)歷探索分數(shù)的基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。
2.能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變得分數(shù)。
3.經(jīng)歷觀察、操作和討論等學(xué)習(xí)活動,體驗數(shù)學(xué)學(xué)習(xí)的樂趣。
教學(xué)重點:
探索和理解分數(shù)的基本性質(zhì)
教學(xué)難點:
理解分數(shù)的基本性質(zhì),并能應(yīng)用其解決一些簡單問題。
教具準(zhǔn)備:
圓、長方形紙片
教學(xué)過程:
一、找分數(shù)
出示40的圓形圖,畫出陰影,提問:你可以用分數(shù)表示出陰影部分得面積嗎?
6/9和2/3表示有什么樣的關(guān)系?
折一折
說一說這些分數(shù)有什么共同之處。
歸納:分數(shù)的分子和分母都乘或除以相同的數(shù)(0除外)分數(shù)的大小不變。
二、嘗試練習(xí)
學(xué)生獨立嘗試填寫,教師巡視指導(dǎo),然后讓學(xué)生交流自己的思考過程。
三、鞏固
指導(dǎo)學(xué)生進行練習(xí),并讓學(xué)生說說是運用了分數(shù)的.什么性質(zhì)?
練一練
涂一涂,填一填。完成第1、2題。
學(xué)生填寫完要說說想法,重點說說分母由3變成了18要乘6,所以分子2也要乘6。
完成練一練第3、4題。
板書設(shè)計:
找規(guī)律
分數(shù)的分子和分母都乘以
或除以相同的數(shù)(0除外),
分數(shù)的大小不變
【《分數(shù)的基本性質(zhì)》教案】相關(guān)文章:
分數(shù)的基本性質(zhì)教案08-06
分數(shù)的基本性質(zhì)教案15篇[精選]08-28
(實用)分數(shù)的基本性質(zhì)教案范文09-02
分數(shù)的基本性質(zhì)說課稿06-26