欧美三级中文字幕乱码,日本亚洲中文无线码在线观看,91精品视频免费观看,伊人久久综合

        當前位置:9136范文網(wǎng)>教育范文>教案>二次根式教案優(yōu)秀

        二次根式教案優(yōu)秀

        時間:2023-10-17 07:55:29 教案 我要投稿
        • 相關(guān)推薦

        二次根式教案優(yōu)秀

          作為一名教師,可能需要進行教案編寫工作,教案是實施教學的主要依據(jù),有著至關(guān)重要的作用。怎樣寫教案才更能起到其作用呢?下面是小編精心整理的二次根式教案優(yōu)秀,僅供參考,希望能夠幫助到大家。

        二次根式教案優(yōu)秀

          教學目的

          1.使學生掌握最簡二次根式的定義,并會應(yīng)用此定義判斷一個根式是否為最簡二次根式;

          2.會運用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。

          教學重點

          最簡二次根式的定義。

          教學難點

          一個二次根式化成最簡二次根式的方法。

          教學過程

          一、復(fù)習引入

          1.把下列各根式化簡,并說出化簡的根據(jù):

          2.引導學生觀察考慮:

          化簡前后的根式,被開方數(shù)有什么不同?

          化簡前的被開方數(shù)有分數(shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

          3.啟發(fā)學生回答:

          二次根式,請同學們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

          二、講解新課

          1.總結(jié)學生回答的內(nèi)容后,給出最簡二次根式定義:

          滿足下列兩個條件的二次根式叫做最簡二次根式:

          (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

          (2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

          最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

          2.練習:

          下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

          3.例題:

          例1把下列各式化成最簡二次根式:

          例2把下列各式化成最簡二次根式:

          4.總結(jié)

          把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?

          當被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。

          當被開方數(shù)是分數(shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

          此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

          三、鞏固練習

          1.把下列各式化成最簡二次根式:

          2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

          四、小結(jié)

          本節(jié)課學習了最簡二次根式的定義及化簡二次根式的方法。同學們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個根式化成最簡二次根式,特別注意當被開方數(shù)為多項式時要進行因式分解,被開方數(shù)為兩個分數(shù)的和則要先通分,再化簡。

          五、布置作業(yè)

          下列各式化成最簡二次根式:

        【二次根式教案優(yōu)秀】相關(guān)文章:

        二次根式教案02-15

        精選二次根式教案四篇07-31

        【精選】二次根式教案四篇08-06

        關(guān)于二次根式教案3篇10-22

        二次根式教案十篇04-11

        【實用】二次根式教案四篇04-06

        【精華】二次根式教案3篇04-05

        關(guān)于二次根式教案三篇04-09

        【推薦】二次根式教案4篇04-07