- 相關(guān)推薦
分式方程2教學(xué)反思
身為一名優(yōu)秀的人民教師,我們需要很強(qiáng)的教學(xué)能力,教學(xué)反思能很好的記錄下我們的課堂經(jīng)驗(yàn),寫(xiě)教學(xué)反思需要注意哪些格式呢?以下是小編幫大家整理的分式方程2教學(xué)反思,歡迎閱讀與收藏。
分式方程2教學(xué)反思1
本節(jié)課作為分式方程的第一節(jié)課,是在學(xué)生掌握了一元一次方程的解法及分式四則混合運(yùn)算的基礎(chǔ)上展開(kāi)的,既是前一節(jié)的深化,同時(shí)解決了解方程的問(wèn)題,又為以后的教學(xué)——“應(yīng)用”打下了良好的基礎(chǔ),因而在教材中具有不可忽略的地位與作用。
本節(jié)的教學(xué)重點(diǎn)是探索分式方程概念、會(huì)解可化為一元一次方程的分式方程、明確分式方程與整式方程的區(qū)別和聯(lián)系。教學(xué)難點(diǎn)是如何將分式方程轉(zhuǎn)化成整式方程。本節(jié)教材中的引例分式方程較復(fù)雜,學(xué)生直接探索它的解法有些困難。我是從簡(jiǎn)單的整式方程引出分式方程后,再引導(dǎo)學(xué)生探究它的解法。這樣很輕松地找到新知識(shí)的切入點(diǎn):用等式性質(zhì)去分母,轉(zhuǎn)化為整式方程再求解。因此,學(xué)生學(xué)的效果也較好。
我認(rèn)為比較成功的
1、把思考留給學(xué)生,課堂教學(xué)試一試這個(gè)環(huán)節(jié)中,我把更多的思維空間留給學(xué)生。問(wèn)題不輕易直接告訴學(xué)生答案,而由學(xué)生通過(guò)動(dòng)手動(dòng)腦來(lái)獲得,從而發(fā)揮他們的主觀能動(dòng)性。我主要在做題方法上指導(dǎo),思維方式上點(diǎn)撥。改變那種讓學(xué)生在自己后面亦步亦趨的習(xí)慣,從而成為愛(ài)動(dòng)腦、善動(dòng)腦的學(xué)習(xí)者。
2、積極正確的引導(dǎo),點(diǎn)撥。保證學(xué)生掌握正確知識(shí),和清晰的解題思路。由于學(xué)生總結(jié)的語(yǔ)言有限,我就把本節(jié)課的重點(diǎn)內(nèi)容:解分式方程的思路,步驟,如何檢驗(yàn)等都用多媒體形式給學(xué)生展示出來(lái)。還有在解分式方程過(guò)程中容易出現(xiàn)的問(wèn)題都給學(xué)生做了強(qiáng)調(diào)。
3、及時(shí)檢查糾正,保證學(xué)生認(rèn)識(shí)到自己的錯(cuò)誤并在第一時(shí)間內(nèi)更正。學(xué)生在做題過(guò)程中我就在教室巡視,及時(shí)發(fā)現(xiàn)學(xué)生的錯(cuò)誤,及時(shí)糾正。對(duì)于困難的學(xué)生也做個(gè)別輔導(dǎo)。
雖然在課堂上做了很多,但也存在許多不足的地方,這也是我在今后教學(xué)中應(yīng)該注意的地方。第一,講例題時(shí),先講一個(gè)產(chǎn)生增根的較好,這樣便于說(shuō)明分式方程有時(shí)無(wú)解的原因,也便于講清分式方程檢驗(yàn)的必要性,也是解分式方程與整式方程最大的區(qū)別所在,從而再?gòu)?qiáng)調(diào)解分式方程必須檢驗(yàn),不能省略不寫(xiě)這一步。第二,給學(xué)生的鼓勵(lì)不是很多。鼓勵(lì)可以讓學(xué)生有充分的.自信心!靶判氖浅晒Φ囊话搿,“在今后的課堂教學(xué)中,應(yīng)尊重其差異性,盡可能分層教學(xué),評(píng)價(jià)標(biāo)準(zhǔn)多樣化。多鼓勵(lì),少批評(píng);多肯定,少指責(zé)。用動(dòng)態(tài)的、發(fā)展的、積極的眼光看待每個(gè)學(xué)生,幫助他們樹(shù)立自信心。贊美的力量是巨大的,有時(shí),一句贊美的話(huà),可以改變?nèi)说囊簧。一句肯定的?huà)、一個(gè)贊許的點(diǎn)頭、一張表示優(yōu)勝的卡片,都是很好的鼓勵(lì),會(huì)起到意想不到的良好結(jié)果。
分式方程2教學(xué)反思2
分式是八年級(jí)數(shù)學(xué)的第一章,經(jīng)歷了三周多的學(xué)習(xí),學(xué)生已基本掌握了分式的有關(guān)知識(shí)(分式的概念、分式的基本性質(zhì)、約分、通分、分式的運(yùn)算、分式方程和能化為一元一次方程的分式方程的應(yīng)用題等),并且獲得了學(xué)習(xí)代數(shù)知識(shí)的常用方法,感受到代數(shù)學(xué)習(xí)的實(shí)際應(yīng)用價(jià)值。下面是我在教學(xué)中的幾點(diǎn)體會(huì):
一、教學(xué)中的發(fā)現(xiàn)
本章可以讓學(xué)生通過(guò)觀察、類(lèi)比、猜想、嘗試等活動(dòng)學(xué)習(xí)分式的運(yùn)算法則,發(fā)展他們的合情推理能力,所以教學(xué)時(shí)重點(diǎn)應(yīng)放在對(duì)法則的探索過(guò)程上。一定要讓學(xué)生充分活動(dòng)起來(lái)。在觀察、類(lèi)比、猜想、嘗試當(dāng)一系列思想活動(dòng)中發(fā)現(xiàn)法則、理解法則、應(yīng)用法則,同時(shí)還要關(guān)注學(xué)生對(duì)算理的理解,以培養(yǎng)學(xué)生的代數(shù)表達(dá)能力、運(yùn)算能力和有理的思考問(wèn)題能力?墒俏以谥R(shí)的傳授上并沒(méi)有注重探索、類(lèi)比法則,而重在對(duì)分式四則運(yùn)算法則的運(yùn)用和分式方程的運(yùn)用上,沒(méi)有抓住教學(xué)的關(guān)鍵環(huán)節(jié)恰當(dāng)?shù)倪x擇教學(xué)方法。今后要避免類(lèi)似事情的發(fā)生。
二、教學(xué)中的重建
分式的運(yùn)算(加、減、乘、除、乘方和混合運(yùn)算)是代數(shù)恒等變形的基礎(chǔ)之一,但是不能盲目的.加大運(yùn)算量與題目的難度,重點(diǎn)應(yīng)放在對(duì)運(yùn)算過(guò)程推理的理解上,把分式的基本性質(zhì)做到靈活運(yùn)用。
再則,對(duì)課本上關(guān)于分式的具體問(wèn)題一定要重視,并關(guān)注學(xué)生在這些具體活動(dòng)中的投入程度,看他們能否積極主動(dòng)地參與,其次看學(xué)生在這些活動(dòng)中的思維發(fā)展水平———能否獨(dú)立思考?能否用數(shù)學(xué)語(yǔ)言表達(dá)自己的想法?能否反思自己的思維過(guò)程?進(jìn)而發(fā)現(xiàn)新的問(wèn)題,培養(yǎng)學(xué)生解決問(wèn)題的能力!提高學(xué)生的學(xué)習(xí)興趣!
分式方程2教學(xué)反思3
教師想方設(shè)法為學(xué)生設(shè)計(jì)好的問(wèn)題情景,同時(shí)給學(xué)生提供充分的思維空間,學(xué)生在參與發(fā)現(xiàn)和探索的過(guò)程中思維就會(huì)創(chuàng)在一個(gè)又一個(gè)的點(diǎn)上,這樣的教學(xué)日積月累對(duì)于培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新能力是有巨大的作用的。我認(rèn)為學(xué)好數(shù)學(xué)最好的方法是在發(fā)現(xiàn)中學(xué)習(xí),在學(xué)生的再創(chuàng)造中學(xué)習(xí),并引導(dǎo)學(xué)生去學(xué)習(xí)。
教學(xué)設(shè)計(jì)中教師要根據(jù)目的要求,內(nèi)容多少,重點(diǎn)難點(diǎn),學(xué)生的條件,以及教學(xué)設(shè)備等合理地分配教學(xué)時(shí)間。其次,要注意節(jié)省時(shí)間,特別是在講授新知識(shí)時(shí),要抓住重點(diǎn),不能企圖一下講深講透。要安排一定的練習(xí)時(shí)間。通過(guò)練習(xí)的反饋,再采取必要的講解或補(bǔ)充練習(xí)。再次,要注意盡量安排全班學(xué)生的活動(dòng),如操作、練習(xí)鞏固,解應(yīng)用題等,避免由少數(shù)人代替全班學(xué)生的思維活動(dòng),使大多數(shù)學(xué)生成為旁觀者。要注意在一節(jié)課內(nèi)提高學(xué)生的平均做題率。此外,還要注意選擇有效的.練習(xí)方式和收集反饋信息的方式,以便節(jié)約教學(xué)時(shí)間,并能及時(shí)發(fā)現(xiàn)問(wèn)題。
班級(jí)的學(xué)生有整體的特點(diǎn),當(dāng)一定存在個(gè)體差異。如果要求每一個(gè)教學(xué)目標(biāo)都人人過(guò)關(guān),實(shí)屬不智行為。效率是整體利益的平衡結(jié)果,不能因?yàn)閭(gè)別同學(xué)目標(biāo)未達(dá)成而犧牲整體的時(shí)間利益,這會(huì)造成新的教學(xué)問(wèn)題。所以在集體教學(xué)時(shí),把握大多數(shù),將整體利益平衡好,這樣的集體教學(xué)才是有效率可言的。當(dāng)然教師在教學(xué)過(guò)程還是要關(guān)注每一位學(xué)生,關(guān)注其是否在聽(tīng)教師的講解分析,以及自身是否在積極思考問(wèn)題。千萬(wàn)不可只顧自己按照教案設(shè)計(jì)去講,而忽視學(xué)生的思維。
分式方程2教學(xué)反思4
解分式方程的思想是將分式方程轉(zhuǎn)化為整式方程,驗(yàn)根是解分式方程必不可少的步驟。分式方程又是解決實(shí)際問(wèn)題的工具之一。
教學(xué)設(shè)計(jì)中蘊(yùn)涵的數(shù)學(xué)思想和數(shù)學(xué)方法:《分式》一章在教學(xué)上應(yīng)多用類(lèi)比的方法,與分?jǐn)?shù)進(jìn)行類(lèi)比教學(xué),使學(xué)生明確分式與分?jǐn)?shù)、分式與整式等方面的區(qū)別與聯(lián)系,體會(huì)分式的模型思想,進(jìn)一步發(fā)展符號(hào)感,一定能取到事半功倍之效。而解分式方程的基本思想是把分式方程轉(zhuǎn)化為整式方程。解可化為一元一次方程的分式方程,也是以一元一次方程的解法為基礎(chǔ),只是需把分式方程化成整式方程,所以教學(xué)時(shí)應(yīng)注意重新舊知識(shí)的聯(lián)系與區(qū)別,注重滲透轉(zhuǎn)化的思想,同時(shí)要適當(dāng)復(fù)習(xí)一元一次方程的解法。
教學(xué)目標(biāo):
1、了解分式方程的概念,和產(chǎn)生增根的原因。
2、掌握分式方程的解法,會(huì)解可化為一元一次方程的分式方程,會(huì)檢驗(yàn)一個(gè)數(shù)是不是原方程的增根。
重點(diǎn)、難點(diǎn)
1、重點(diǎn):會(huì)解可化為一元一次方程的'分式方程,會(huì)檢驗(yàn)一個(gè)數(shù)是不是原方程的增根。
2、難點(diǎn):會(huì)解可化為一元一次方程的分式方程,會(huì)檢驗(yàn)一個(gè)數(shù)是不是原方程的增根。
3、認(rèn)知難點(diǎn)與突破方法
解可化為一元一次方程的分式方程,也是以一元一次方程的解法為基礎(chǔ),只是需把分式方程化成整式方程,所以教學(xué)時(shí)應(yīng)注意重新舊知識(shí)的聯(lián)系與區(qū)別,注重滲透轉(zhuǎn)化的思想,同時(shí)要適當(dāng)復(fù)習(xí)一元一次方程的解法。至于解分式方程時(shí)產(chǎn)生增根的原因只讓學(xué)生了解就可以了,重要的是應(yīng)讓學(xué)生掌握驗(yàn)根的方法。
要使學(xué)生掌握解分式方程的基本思路是將分式方程轉(zhuǎn)化整式方程,具體的方法是“去分母”,即方程兩邊統(tǒng)稱(chēng)最簡(jiǎn)公分母。
分式方程2教學(xué)反思5
1、在復(fù)習(xí)中引入新的教學(xué)重點(diǎn),回顧以往所學(xué)習(xí)的方程知識(shí),采用讓學(xué)生自己說(shuō)出幾個(gè)一元一次方程并求解的方法,充分發(fā)揮了學(xué)生的主動(dòng)性,活躍了課堂氣氛。為本節(jié)課開(kāi)了一個(gè)好頭。
2、利用學(xué)生的一個(gè)求不出解的一元一次方程(x—1)/3+1=(2x—3)/6,借機(jī)讓學(xué)生明確可化為ax=b(a不等于0)的.方程才是一元一次方程。自然巧妙的讓學(xué)生為后面的學(xué)習(xí)做好了鋪墊。也吸引了學(xué)生的注意力,讓學(xué)生覺(jué)得有趣而一步一步的聽(tīng)下去。
3、通過(guò)設(shè)問(wèn),活動(dòng),讓學(xué)生親自感知,體驗(yàn),在感知和體驗(yàn)中進(jìn)行質(zhì)疑、思考與探究,通過(guò)質(zhì)疑、思考與探索發(fā)現(xiàn)新知,激發(fā)了學(xué)生的參與熱情,培養(yǎng)了學(xué)生的探索意識(shí),使學(xué)生在喜悅的氣氛下自主的學(xué)習(xí)。
通過(guò)本節(jié)課,也使我領(lǐng)悟到,在今后的教學(xué)中,應(yīng)做到以下幾點(diǎn):
1、變枯燥為有趣同,讓學(xué)生成為整個(gè)教學(xué)的重點(diǎn)。
興趣是最好的老師,只有充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情,才能使學(xué)生真正參與學(xué)習(xí)中來(lái),才能主動(dòng)地去學(xué)習(xí)。當(dāng)然,這需要老師多下功夫,多聯(lián)系實(shí)際,多設(shè)計(jì)情景,讓學(xué)生覺(jué)得不是在上課,而是在演電視劇,而他就是其中的主人公。
2、變復(fù)雜為簡(jiǎn)單。
越簡(jiǎn)單學(xué)生就越想學(xué),越會(huì)做學(xué)生就越想做,簡(jiǎn)單之中蘊(yùn)含著大道理,簡(jiǎn)單的做多了,熟練了,才可能去做復(fù)雜的。當(dāng)然這需要形式多樣,而不能單一。
3、給學(xué)生足夠的思考空間,不要急于給出答案,就是學(xué)生說(shuō)錯(cuò)了,也不要把學(xué)生硬拉過(guò)來(lái),而應(yīng)該給學(xué)生留下思考的空間。
分式方程2教學(xué)反思6
本節(jié)課我主要采取“361”的課堂教學(xué)模式,讓學(xué)生自習(xí)的基礎(chǔ)上進(jìn)上步加深對(duì)知識(shí)的掌握。這種學(xué)習(xí)模式符合課改要求,但是經(jīng)過(guò)教學(xué)發(fā)現(xiàn),以以往的教學(xué)中,學(xué)生在解分式方程時(shí)需要花費(fèi)很長(zhǎng)時(shí)間,學(xué)生在有限的時(shí)間內(nèi)難以完成教學(xué)任務(wù),但本節(jié)課,通過(guò)學(xué)生的課前的預(yù)習(xí),節(jié)約的課堂上的時(shí)間。
教學(xué)上應(yīng)多用類(lèi)比的方法,與分?jǐn)?shù)進(jìn)行類(lèi)比教學(xué),使學(xué)生明確分式與分?jǐn)?shù)、分式與整式等方面的區(qū)別與聯(lián)系,體會(huì)分式的模型思想,進(jìn)一步發(fā)展符號(hào)感,一定能取到事半功倍之效。而解分式方程的基本思想是把分式方程轉(zhuǎn)化為整式方程。解可化為一元一次方程的分式方程,也是以一元一次方程的.解法為基礎(chǔ),只是需把分式方程化成整式方程,所以教學(xué)時(shí)應(yīng)注意重新舊知識(shí)的聯(lián)系與區(qū)別,注重滲透轉(zhuǎn)化的思想,同時(shí)要適當(dāng)復(fù)習(xí)一元一次方程的解法。
解可化為一元一次方程的分式方程,也是以一元一次方程的解法為基礎(chǔ),只是需把分式方程化成整式方程,所以教學(xué)時(shí)應(yīng)注意重新舊知識(shí)的聯(lián)系與區(qū)別,注重滲透轉(zhuǎn)化的思想,同時(shí)要適當(dāng)復(fù)習(xí)一元一次方程的解法。至于解分式方程時(shí)產(chǎn)生增根的原因只讓學(xué)生了解就可以了,重要的是應(yīng)讓學(xué)生掌握驗(yàn)根的方法。
要使學(xué)生掌握解分式方程的基本思路是將分式方程轉(zhuǎn)化整式方程,具體的方法是“去分母”,即方程兩邊統(tǒng)稱(chēng)最簡(jiǎn)公分母。
在教學(xué)過(guò)程中,由于種種原因,存在著不少的不足。
1、回顧引入部分題目有點(diǎn)多,應(yīng)該選擇簡(jiǎn)單有代表性的一兩個(gè)題目,循序漸進(jìn),符合人類(lèi)認(rèn)知規(guī)律。
2、教學(xué)重點(diǎn)強(qiáng)調(diào)力度不夠。對(duì)學(xué)生理解消化能力過(guò)于相信,而分式方程的難點(diǎn)就是第一步,即將分式方程轉(zhuǎn)化成整式方程。在這里,需要特別強(qiáng)化這個(gè)過(guò)程,應(yīng)該對(duì)其進(jìn)行專(zhuān)項(xiàng)訓(xùn)練或重點(diǎn)分析。例如,就學(xué)生的不同做法進(jìn)行分析,讓他們明白課本的這種方法最簡(jiǎn)單最方便。
3、時(shí)間掌握不太好。學(xué)生預(yù)習(xí)還不夠充分,導(dǎo)致突發(fā)事件過(guò)多,以致總結(jié)過(guò)于匆忙。
分式方程2教學(xué)反思7
分式方程在整個(gè)初中數(shù)學(xué)中占有十分重要的地位在本課的教學(xué)過(guò)程中,我認(rèn)為應(yīng)從這樣的幾個(gè)方面入手:
1、分式方程和整式方程的區(qū)別:分清楚分式分式方程必須滿(mǎn)足的兩個(gè)條件,⑴方程式里必須有分式,⑵分母中含有未知數(shù)。這兩個(gè)條件是判斷一個(gè)方程是否為分式方程的充要條件。同時(shí),由于分母中含有未知數(shù),所以將其轉(zhuǎn)化為整式方程后求出的解就應(yīng)使每一個(gè)分式有意義,否則,這個(gè)根就是原方程的增根。正是由于分式方程與整式方程的區(qū)別,在解分式方程時(shí)必須進(jìn)行檢驗(yàn)。
2、分式方程和整式方程的聯(lián)系:分式方程通過(guò)方程兩邊都乘以最簡(jiǎn)公分母,約去分母,就可以轉(zhuǎn)化為整式方程來(lái)解,教學(xué)時(shí)應(yīng)充分體現(xiàn)這種化歸思想的教學(xué)。
3、解分式方程時(shí),如果分母是多項(xiàng)式時(shí),應(yīng)先寫(xiě)出將分母進(jìn)行因式分解的步驟來(lái),從而讓學(xué)生準(zhǔn)確無(wú)誤地找出最簡(jiǎn)公分母
4、對(duì)分式方程可能產(chǎn)生增根的原因,要啟發(fā)學(xué)生認(rèn)真思考和討論。
在本節(jié)教學(xué)中,學(xué)生對(duì)于一元一次方程的`解法已經(jīng)十分了解,學(xué)生在解方程中一般的方法完全能夠解決,在這個(gè)問(wèn)題中不用過(guò)多的用時(shí)間,所有的時(shí)間全部放給學(xué)生去練習(xí),重點(diǎn)讓學(xué)生去練習(xí)檢驗(yàn)這一步驟。
通過(guò)學(xué)習(xí),學(xué)生感到學(xué)的容易,老師教的輕松。教學(xué)效果十分理想。
【分式方程2教學(xué)反思】相關(guān)文章:
分式方程教學(xué)反思02-19
《分式方程》教學(xué)反思03-26
分式方程教學(xué)反思(15篇)11-24
分式方程教學(xué)反思(集合15篇)02-18
分式方程教學(xué)反思(合集15篇)01-20
《識(shí)字2》教學(xué)反思06-20
識(shí)字2教學(xué)反思09-13
守株待兔教學(xué)反思2篇02-16