- 相關(guān)推薦
數(shù)學(xué)全等三角形教學(xué)設(shè)計(jì)
作為一名教職工,時(shí)常需要準(zhǔn)備好教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)是對(duì)學(xué)業(yè)業(yè)績(jī)問(wèn)題的解決措施進(jìn)行策劃的過(guò)程。教學(xué)設(shè)計(jì)應(yīng)該怎么寫(xiě)呢?以下是小編幫大家整理的數(shù)學(xué)全等三角形教學(xué)設(shè)計(jì),希望能夠幫助到大家。
數(shù)學(xué)全等三角形教學(xué)設(shè)計(jì) 篇1
教學(xué)目標(biāo)
一、知識(shí)與技能
1、了解全等形和全等三角形的概念,掌握全等三角形的性質(zhì)。
2、能正確表示兩個(gè)全等三角形,能找出全等三角形的對(duì)應(yīng)元素。
二、過(guò)程與方法
通過(guò)觀察、拼圖以及三角形的平移、旋轉(zhuǎn)和翻折等活動(dòng),來(lái)感知兩個(gè)三角形全等,以及全等三角形的性質(zhì)。
三、情感態(tài)度與價(jià)值觀
通過(guò)全等形和全等三角形的學(xué)習(xí),認(rèn)識(shí)和熟悉生活中的全等圖形,認(rèn)識(shí)生活和數(shù)學(xué)的關(guān)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn)
1、全等三角形的性質(zhì)。
2、在通過(guò)觀察、實(shí)際操作來(lái)感知全等形和全等三角形的基礎(chǔ)上,形成理性認(rèn)識(shí),理解并掌握全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等。
教學(xué)難點(diǎn)
正確尋找全等三角形的對(duì)應(yīng)元素
難點(diǎn)突破
通過(guò)拼圖、對(duì)三角形進(jìn)行平移、旋轉(zhuǎn)、翻折等活動(dòng),讓學(xué)生在動(dòng)手操作的過(guò)程中,感知全等三角形圖形變換中的對(duì)應(yīng)元素的變化規(guī)律,以尋找全等三角形的對(duì)應(yīng)點(diǎn)、對(duì)應(yīng)邊、對(duì)應(yīng)角。
課前準(zhǔn)備:
課件、三角形紙片
教學(xué)過(guò)程
一、出示學(xué)習(xí)目標(biāo)
1、知道什么是全等形、全等三角形及全等三角形的對(duì)應(yīng)元素。
2、知道全等三角形的性質(zhì),能用符號(hào)正確地表示兩個(gè)三角形全等。
二、直觀感知,導(dǎo)入新課
教師演示一些全等的圖形的課件,讓學(xué)生直觀感知圖片并尋找每組圖片的特點(diǎn)。二、合作探究,學(xué)習(xí)新知
1、全等形。
我們給這樣的圖形起個(gè)名稱————全等形。[板書(shū):全等形]
教師讓學(xué)生們想生活中還有那些圖形是全等形。
2、全等三角形及相關(guān)對(duì)應(yīng)元素的定義。
教師用多媒體動(dòng)態(tài)演示兩個(gè)能完全重合地三角形。定義全等三角形:能夠完全重合的兩個(gè)三角形,叫全等三角形。
3、全等三角形的對(duì)應(yīng)元素及表示。
把三角形平移、翻折、旋轉(zhuǎn)后,什么發(fā)生了變化,什么沒(méi)有變?
歸納:旋轉(zhuǎn)前后的兩個(gè)三角形,位置變化了,但形狀大小都沒(méi)有變,它們依然全等。
以多媒體上的圖形為例,全等三角形中的對(duì)應(yīng)元素
(1)對(duì)應(yīng)的頂點(diǎn)(三個(gè))———重合的頂點(diǎn)
(2)對(duì)應(yīng)邊(三條)———重合的邊
。3)對(duì)應(yīng)角(三個(gè))———重合的角
歸納:方法一———全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊,兩個(gè)對(duì)應(yīng)角所夾的.邊是對(duì)應(yīng)邊;方法二:全等三角形對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角,兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角。
另外:有公共邊的,公共邊一定是對(duì)應(yīng)邊;有對(duì)頂角的,對(duì)頂角一定是對(duì)應(yīng)角。
用符號(hào)表示全等三角形
抽學(xué)生表示圖一、圖二、三的全等三角形。
全等三角形的性質(zhì)
思考:全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角有什么關(guān)系?為什么?
歸納:全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等。
小組活動(dòng)合作升華
學(xué)生分小組動(dòng)手操作擺圖形
小組合作完成位置不同的三角形,寫(xiě)出它們的對(duì)應(yīng)邊,對(duì)應(yīng)角。強(qiáng)調(diào)其他小組學(xué)生說(shuō)的時(shí)候,自己一定要注意傾聽(tīng),能夠分辨出對(duì)錯(cuò)來(lái)。
三、鞏固練習(xí)
四、教師用多媒體展示習(xí)題,學(xué)生做鞏固練習(xí)。
五、小結(jié):本節(jié)課都學(xué)到了什么
六、作業(yè):
必做題課本33頁(yè)習(xí)題第1題、2題。
選做題課本第34頁(yè)第6題。
數(shù)學(xué)全等三角形教學(xué)設(shè)計(jì) 篇2
一、教學(xué)目標(biāo)
【知識(shí)與技能】
掌握三角形全等的“角角邊”條件,會(huì)把“角邊角”轉(zhuǎn)化成“角角邊”。能運(yùn)用全等三角形的條件,解決簡(jiǎn)單的推理證明問(wèn)題。
【過(guò)程與方法】
經(jīng)歷探索三角形全等條件的過(guò)程,體會(huì)利用操作、歸納獲得數(shù)學(xué)結(jié)論的過(guò)程。
【情感、態(tài)度與價(jià)值觀】
在探索歸納論證的過(guò)程中,體會(huì)數(shù)學(xué)的`嚴(yán)謹(jǐn)性,體驗(yàn)成功的快樂(lè)。
二、教學(xué)重難點(diǎn)
【教學(xué)重點(diǎn)】
“角角邊”三角形全等的探究。
【教學(xué)難點(diǎn)】
將三角形“角邊角”全等條件轉(zhuǎn)化成“角角邊”全等條件。
三、教學(xué)過(guò)程
。ㄒ唬┮胄抡n
利用復(fù)習(xí)舊知三角形“角邊角”全等判定定理:兩角和它們夾邊分別相等的兩個(gè)三角形全等(可以簡(jiǎn)寫(xiě)成“角邊角”或“ASA”)
(四)小結(jié)作業(yè)
提問(wèn):今天有什么收獲?還有什么疑問(wèn)?
課后作業(yè):書(shū)后相關(guān)練習(xí)題。
數(shù)學(xué)全等三角形教學(xué)設(shè)計(jì) 篇3
教學(xué)目標(biāo)
1、知道什么是全等形、全等三角形及全等三角形的對(duì)應(yīng)元素。
2、知道全等三角形的性質(zhì),能用符號(hào)正確地表示兩個(gè)三角形全等。
3、能熟練找出兩個(gè)全等三角形的對(duì)應(yīng)角、對(duì)應(yīng)邊。
教學(xué)重點(diǎn)
全等三角形的性質(zhì)。
教學(xué)難點(diǎn)
找全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角。
教學(xué)過(guò)程
一、提出問(wèn)題,創(chuàng)設(shè)情境
1、問(wèn)題:你能發(fā)現(xiàn)這兩個(gè)三角形有什么美妙的關(guān)系嗎?
這兩個(gè)三角形是完全重合的。
2、學(xué)生自己動(dòng)手(同桌兩名同學(xué)配合)
取一張紙,將自己事先準(zhǔn)備好的三角板按在紙上,畫(huà)下圖形,照?qǐng)D形裁下來(lái),紙樣與三角板形狀、大小完全一樣。
3、獲取概念
讓學(xué)生用自己的語(yǔ)言敘述:全等形、全等三角形、對(duì)應(yīng)頂點(diǎn)、對(duì)應(yīng)角、對(duì)應(yīng)邊,以及有關(guān)的數(shù)學(xué)符號(hào)。
形狀與大小都完全相同的兩個(gè)圖形就是全等形。
要是把兩個(gè)圖形放在一起,能夠完全重合,就可以說(shuō)明這兩個(gè)圖形的形狀、大小相同。
概括全等形的準(zhǔn)確定義:能夠完全重合的兩個(gè)圖形叫做全等形。請(qǐng)同學(xué)們類推得出全等三角形的概念,并理解對(duì)應(yīng)頂點(diǎn)、對(duì)應(yīng)角、對(duì)應(yīng)邊的含義。仔細(xì)閱讀課本中"全等"符號(hào)表示的要求。
二、導(dǎo)入新課
將△ABC沿直線BC平移得△DEF;將△ABC沿BC翻折180°得到△DBC;將△ABC旋轉(zhuǎn)180°得△AED。
議一議:各圖中的兩個(gè)三角形全等嗎?
不難得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED。
(注意強(qiáng)調(diào)書(shū)寫(xiě)時(shí)對(duì)應(yīng)頂點(diǎn)字母寫(xiě)在對(duì)應(yīng)的位置上)
啟示:一個(gè)圖形經(jīng)過(guò)平移、翻折、旋轉(zhuǎn)后,位置變化了,但形狀、大小都沒(méi)有改變,所以平移、翻折、旋轉(zhuǎn)前后的圖形全等,這也是我們通過(guò)運(yùn)動(dòng)的方法尋求全等的一種策略。
觀察與思考:
尋找甲圖中兩三角形的對(duì)應(yīng)元素,它們的對(duì)應(yīng)邊有什么關(guān)系?對(duì)應(yīng)角呢?
。ㄒ龑(dǎo)學(xué)生從全等三角形可以完全重合出發(fā)找等量關(guān)系)
得到全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)邊相等。全等三角形的對(duì)應(yīng)角相等。
[例1]如圖,△OCA≌△OBD,C和B,A和D是對(duì)應(yīng)頂點(diǎn),說(shuō)出這兩個(gè)三角形中相等的邊和角。
問(wèn)題:△OCA≌△OBD,說(shuō)明這兩個(gè)三角形可以重合,思考通過(guò)怎樣變換可以使兩三角形重合?
將△OCA翻折可以使△OCA與△OBD重合。因?yàn)镃和B、A和D是對(duì)應(yīng)頂點(diǎn),所以C和B重合,A和D重合。
∠C=∠B;∠A=∠D;∠AOC=∠DOB。AC=DB;OA=OD;OC=OB。
總結(jié):兩個(gè)全等的三角形經(jīng)過(guò)一定的轉(zhuǎn)換可以重合。一般是平移、翻轉(zhuǎn)、旋轉(zhuǎn)的方法。
[例2]如圖,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的對(duì)應(yīng)邊和對(duì)應(yīng)角。
分析:對(duì)應(yīng)邊和對(duì)應(yīng)角只能從兩個(gè)三角形中找,所以需將△ABE和△ACD從復(fù)雜的圖形中分離出來(lái)。
根據(jù)位置元素來(lái)找:有相等元素,它們就是對(duì)應(yīng)元素,然后再依據(jù)已知的對(duì)應(yīng)元素找出其余的'對(duì)應(yīng)元素。常用方法有:
。1)全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊;兩個(gè)對(duì)應(yīng)角所夾的邊也是對(duì)應(yīng)邊。
(2)全等三角形對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角;兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角。
解:對(duì)應(yīng)角為∠BAE和∠CAD。
對(duì)應(yīng)邊為AB與AC、AE與AD、BE與CD。
[例3]已知如圖△ABC≌△ADE,試找出對(duì)應(yīng)邊、對(duì)應(yīng)角。(由學(xué)生討論完成)
借鑒例2的方法,可以發(fā)現(xiàn)∠A=∠A,在兩個(gè)三角形中∠A的對(duì)邊分別是BC和DE,所以BC和DE是一組對(duì)應(yīng)邊。而AB與AE顯然不重合,所以AB與AD是一組對(duì)應(yīng)邊,剩下的AC與AE自然是一組對(duì)應(yīng)邊了。再根據(jù)對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角可得∠B與∠D是對(duì)應(yīng)角,∠ACB與∠AED是對(duì)應(yīng)角。所以說(shuō)對(duì)應(yīng)邊為AB與AD、AC與AE、BC與DE。對(duì)應(yīng)角為∠A與∠A、∠B與∠D、∠ACB與∠AED。
做法二:沿A與BC、DE交點(diǎn)O的連線將△ABC翻折180°后,它正好和△ADE重合。這時(shí)就可找到對(duì)應(yīng)邊為:AB與AD、AC與AE、BC與DE。對(duì)應(yīng)角為∠A與∠A、∠B與∠D、∠ACB與∠AED。
三、課堂練習(xí)
課本練習(xí)1。
四、課時(shí)小結(jié)
通過(guò)本節(jié)課學(xué)習(xí),我們了解了全等的概念,發(fā)現(xiàn)了全等三角形的性質(zhì),并且利用性質(zhì)可以找到兩個(gè)全等三角形的對(duì)應(yīng)元素。這也是這節(jié)課大家要重點(diǎn)掌握的
找對(duì)應(yīng)元素的常用方法有兩種:
。ㄒ唬⿵倪\(yùn)動(dòng)角度看
1、翻轉(zhuǎn)法:找到中心線,沿中心線翻折后能相互重合,從而發(fā)現(xiàn)對(duì)應(yīng)元素。
2、旋轉(zhuǎn)法:三角形繞某一點(diǎn)旋轉(zhuǎn)一定角度能與另一三角形重合,從而發(fā)現(xiàn)對(duì)應(yīng)元素。
3、平移法:沿某一方向推移使兩三角形重合來(lái)找對(duì)應(yīng)元素。
。ǘ└鶕(jù)位置元素來(lái)推理
1、全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊;兩個(gè)對(duì)應(yīng)角所夾的邊是對(duì)應(yīng)邊。
2、全等三角形對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角;兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角。
五、作業(yè)
課本習(xí)題1
課后作業(yè):《新課堂》
【數(shù)學(xué)全等三角形教學(xué)設(shè)計(jì)】相關(guān)文章:
數(shù)學(xué)《全等三角形性質(zhì)》教學(xué)反思07-27
數(shù)學(xué)全等三角形教案12-30
《全等三角形》的教學(xué)反思05-15
《三角形全等的復(fù)習(xí)》教學(xué)反思09-17
全等三角形教案09-13
全等三角形教案10-25
全等三角形教案優(yōu)秀11-21
三角形全等的判定教案12-28
全等三角形判定教案01-24