《反比例意義》教學(xué)反思(通用15篇)
身為一名優(yōu)秀的人民教師,我們的任務(wù)之一就是教學(xué),我們可以把教學(xué)過程中的感悟記錄在教學(xué)反思中,那么教學(xué)反思應(yīng)該怎么寫才合適呢?以下是小編精心整理的《反比例意義》教學(xué)反思,歡迎閱讀,希望大家能夠喜歡。
《反比例意義》教學(xué)反思1
我利用了一節(jié)課時間進行了對比整理,讓學(xué)生在比較的過程中發(fā)現(xiàn)兩種比例關(guān)系的異同后,總結(jié)出判斷的三個步驟:
第一步先找相關(guān)聯(lián)的兩個量和一定的量;
第二步列出求一定量的數(shù)量關(guān)系式;
第三步根據(jù)正反比例的關(guān)系式對照判斷是比值一定還是乘積一定,從而確定成什么比例關(guān)系。學(xué)生根據(jù)這三個步驟做有關(guān)的判斷練習(xí)時,思路清晰了,也找到了一定的規(guī)律和竅門
看來在一些概念性的`教學(xué)中必要的點撥引導(dǎo)是不能少的,這時就需要充分發(fā)揮教師的主導(dǎo)作用,學(xué)生的理解能力是在日積月累的過程中培養(yǎng)起來的,教給學(xué)生一定解題的技巧和方法能提高教學(xué)效率。
《反比例意義》教學(xué)反思2
這部分內(nèi)容是在學(xué)生認識了正比例的意義以及應(yīng)用的基礎(chǔ)上進行教學(xué)的,主要任務(wù)是使學(xué)生認識反比例關(guān)系的意義,掌握成反比例量的變化規(guī)律及其特征,能依據(jù)反比例的意義判斷兩種量成不成反比例。由于學(xué)生憑借正比例的學(xué)習(xí),因此這節(jié)課可以做一個“放手”的老師了。
課上先回憶如何去判斷兩種相聯(lián)的量成正比例關(guān)系,然后出示信息窗的表格,問這兩種量成正比例嗎?學(xué)生馬上得出不成,因為兩種量的比值是不一定的。從而引導(dǎo)學(xué)生觀察表中數(shù)據(jù),小組討論:(1)哪兩種量是相關(guān)聯(lián)的量?(2)這兩種量的變化規(guī)律與正比例的兩種量的變化規(guī)律有什么不同?(3)這種變化有沒有規(guī)律?是怎樣的規(guī)律?課上重點研究(2)和(3)兩個問題,得出這兩種量的變化規(guī)律是一種量在變大,另一種量在變小,一種量變小,另一種量變大,是相反的,突出反比例的一個“反”字。不管這兩種量怎樣變化,但是萬變中有不變,這兩個量的積是不變的(一定的)。揭示這兩種量是成反比例的。讓學(xué)生說說成反比例的`三個條件,受正比例的影響,學(xué)生一下就說出來了!然后我直接給出,“糖果廠包裝一批糖果,每袋糖果的粒數(shù)和裝的袋數(shù)是否成反比例,為什么?”學(xué)生也很流利地把問題解決了
最后出示三個填空:填成正比例、反比例或不成比例
長方形的面積一定,長和寬( )。
三角形的面積一定,底和高( )。
圓錐的底一定,圓錐的體積和高( )。
第一小題沒有問題,第二小題問題比較多,都說不成比例,第三題有的同學(xué)不動腦筋,受反比例影響也說是成反比例了。
整節(jié)課我很順利地完成教學(xué)任務(wù),在知識的遷移性的應(yīng)用上我感覺挺不錯,而這也讓我明白打牢知識的基礎(chǔ)才能很好的發(fā)揮知識的遷移性,它能讓自己的教學(xué)輕松自如,讓孩子們對學(xué)習(xí)更加充滿自信,更能體驗到學(xué)習(xí)成功的快樂。
《反比例意義》教學(xué)反思3
教學(xué)過程:
一.復(fù)習(xí)舊知、鋪墊引新
師:上一節(jié)課我們一起學(xué)習(xí)了正比例的意義,那么怎樣判斷兩種相關(guān)聯(lián)的量是否成正比例?用字母怎樣表示正比例關(guān)系?
生:兩種相關(guān)聯(lián)的量,一種量變化另一種量也隨著變化,當(dāng)這兩種量中相對應(yīng)量的比的比值一定,也就是商一定時,我們就稱這兩種量是成正比例的量。如果用字母x和y分別表示兩種相關(guān)聯(lián)的量,用k表示它們的比值,可以用式子y/x=k(一定)。
教者板書用字母表示的式子。
師:說得真好!×××你能再復(fù)述一遍嗎?
生2復(fù)述。
師:那么同學(xué)們能判斷下面兩種量是否成正比例嗎?為什么?
出示:
(1)時間一定,行駛的路程和速度
(2)除數(shù)一定,被除數(shù)和商
生1:時間一定,行駛的路程和速度成正比例。因為行駛的路程/速度=時間(一定)。
生2:除數(shù)一定,被除數(shù)和商成正比例。因為被除數(shù)/商=除數(shù)(一定).
師:在日常生活中我們經(jīng)常遇到單價、數(shù)量和總價這三種量,你能說出單價、數(shù)量和總價之間有怎樣的關(guān)系?在什么條件下,兩種量成正比例?
生1:這三種量有這樣三種關(guān)系:單價×數(shù)量=總價、總價÷數(shù)量=單價、總價÷單價=數(shù)量。當(dāng)單價一定時,總價和數(shù)量成正比例;當(dāng)數(shù)量一定時,總價和單價成正比例。
師:說得真好!如果總價一定,單價和數(shù)量的變化有什么規(guī)律?這兩種量又存在什么關(guān)系?今天,我們就來研究和認識這種變化規(guī)律。
二.交流討論、探究新知
出示例3的表格。
師:這里有一組信息,同學(xué)們仔細看一看這里提供了哪些信息?指名一生回答。
生:這里告訴我們用60元錢去買本子時的幾種可能發(fā)生的一些情況。
師:嗯!請同學(xué)們圍繞這樣幾個問題展開討論:(出示討論提綱)
。1)表中列出的是哪兩種相關(guān)聯(lián)的量?它們分別是怎樣變化的?
。2)你能找出它們變化的規(guī)律嗎?
(3)猜一猜,這兩種量成什么關(guān)系?
待學(xué)生討論片刻之后師提問:誰來將剛才討論的結(jié)果跟大家做個交流。
生:表中列舉了單價和數(shù)量兩種相關(guān)聯(lián)的量,一個量擴大另一個量反而縮小,一個量縮小另一個量反而擴大,在變化的過程中相對應(yīng)的量的乘積始終是60。我想這兩種量之間就是成反比例的關(guān)系。
師:大家同意他的觀點嗎?
生齊:同意!
師:與正比例相比,大家覺得這樣兩種量有什么特征呢?
生:首先要是相關(guān)聯(lián)的量,一個量變化另一個量也要跟著變化。成正比例的兩個量在變化過程中比值不變,而這里的兩種量在變化的過程中是積不變。
師:那我們就可以說,這兩種量具有什么樣的關(guān)系呢?
生:這兩種量的關(guān)系就是反比例關(guān)系。
。ń陶吒鶕(jù)學(xué)生的回答作相應(yīng)的板書)
師:真會觀察思考!
投影出示“試一試”
師:你能根據(jù)表中已有的信息將表填寫完整嗎?
生:每天運18噸,需要運4天;每天運12噸,需要運6天;每天運9噸,需要運8天。
師:為什么這樣填?
生:每天運的噸數(shù)乘以時間要等于總噸數(shù)72噸。
師:根據(jù)表中數(shù)據(jù),你能回答表格下面的問題嗎?
生1:相對應(yīng)的兩個數(shù)的乘積是72。
生2:這個成績表示的是工地要運水泥的總噸數(shù),它們之間的關(guān)系可以用式子:每天運的噸數(shù)×天數(shù)=總噸數(shù)。
生3:每天運的噸數(shù)和需要的天數(shù)成反比例。因為每天運的噸數(shù)和需要的天數(shù)是相關(guān)聯(lián)的兩種量,其中一個量變化,另一個量也隨著變化。在變化過程中,相對應(yīng)的數(shù)量的乘積總是不變,都是72。所以,這道題中的兩種量是成反比例的關(guān)系,每天運的噸數(shù)和需要的天數(shù)是成反比例的量。
師:仔細觀察剛才研究的例3和“試一試”,它們有哪些共同的地方呢?
生1:它們提供的兩種量都是相關(guān)聯(lián)的量。一種量擴大,另一種量縮小;一種量縮小,另一種量擴大。
生2:這兩道題里面的兩種量的乘積都不變的。第一道題中兩種量的乘積都是60,第二道題中的兩種量的乘積都是72.
師:反比例的關(guān)系也可以像正比例一樣用字母式子把它們的關(guān)系表示出來嗎?
生:如果用字母x和y分別表示兩種相關(guān)聯(lián)的量,用k表示它們的比值,反比例關(guān)系可以用:x×y =k(一定)來表示。
三、鞏固應(yīng)用 、拓展延升
1.師:請大家把書翻到第65頁,“練一練”中每袋糖果的粒數(shù)和裝的袋數(shù)成反比例嗎?為什么?
生:這道題中的每袋糖果的粒數(shù)和裝的袋數(shù)成反比例。因為:每袋糖果的粒數(shù)和裝的袋數(shù)是相關(guān)聯(lián)的兩重量,而且每袋糖果的粒數(shù)和裝的袋數(shù)的乘積都是300。
師:你認為要判斷兩種量是否成反比例,要從哪幾個方面來考慮。
生:一要看這兩種量是否相關(guān)聯(lián),二要看相關(guān)聯(lián)的兩種量的乘積是否始終不變。
2.師:請大家把書翻到第68頁,看書上的第六題。請大家寫出幾組對應(yīng)的每本頁數(shù)和裝訂本數(shù)的乘積,再比較乘積的大小。(稍等片刻)
師:誰來匯報一下你寫的幾組乘積,它們有什么關(guān)系?
生:我算了這樣幾組:10×90=900;12×75=900;15×60=900;20×45=900;25×36=900。它們的成績相等,都等于900。
師:這個乘積表示的是什么呢?
生1:這個乘積表示的是紙的總頁數(shù)。
生2:這個乘積表示的就是用來裝訂練習(xí)本的紙的總頁數(shù)。
師:每本練習(xí)本的頁數(shù)和裝訂的本數(shù)成反比例嗎?為什么?
生:成反比例。因為每本練習(xí)本的`頁數(shù)和裝訂的本數(shù)是相關(guān)聯(lián)的兩種量,一種量變化的時候,另一種量也隨著變化,在變化的過程中,每本練習(xí)本的頁數(shù)和裝訂的本數(shù)的乘積保持不變。所以,每本練習(xí)本的頁數(shù)和裝訂的本數(shù)成反比例關(guān)系。
3.師:觀察第7題中的兩種量,每天裝配的數(shù)量和需要的時間成反比例嗎?
生:每天裝配的數(shù)量和需要的時間成反比例。
師:你是怎樣判斷的?
生:每天裝配的數(shù)量和需要的時間是兩種相關(guān)聯(lián)的量,并且這兩種相關(guān)聯(lián)的量中相對應(yīng)的量的積始終不變都是1600。所以每天裝配的數(shù)量和需要的時間成反比例。
4.師:下面我們一起看第8題,首先請大家根據(jù)方格圖中的長方形將表格填寫完整,并思考表格下面兩個問題。
稍等片刻后,師:通過表格的填寫和研究,你發(fā)現(xiàn)什么了嗎?
生:我發(fā)現(xiàn)長方形的面積一定,長方形的長和寬成反比例。長方形的周長一定,長與寬不成反比例。
師:為什么呢?
生:長方形的長和寬是相關(guān)聯(lián)的兩種量,當(dāng)面積一定時,長和寬的乘積是一定的,所以長方形的面積一定時,長方形的長和寬成反比例。而周長一定時,長和寬的和是一定的,積并不一定,所以長方形的周長一定,長與寬不成反比例。
5.師:這里有一道題,同學(xué)們判斷一下。
100÷x=y,那么x和y成什么比例?為什么?
小組交流討論。
師:同學(xué)們有討論出什么結(jié)論了嗎?
生1:我覺得他不成什么比例。
師:為什么呢?
生1遲疑片刻后:看了不像。
師:其他同學(xué)有不同意見嗎?
生2:我覺得這里的x和y兩個量成反比例。
師:能說說理由嗎?
生:我們可以將這個等式的兩邊同時乘以x,等式變?yōu)閤y=100,這說明x和y的乘積是一定的,那么,x和y成反比例。
部分學(xué)生不約而同鼓起掌。
師咨詢生1:同意他的觀點嗎?
生1點頭示意。
四、課尾盤點、總結(jié)反思
師:這節(jié)課你學(xué)會了什么?你有哪些收獲?還有哪些疑問?
生1:我知道了兩個相關(guān)聯(lián)的量,一種量變化另一種量也隨著變化,如果兩種量中相對應(yīng)的量的乘積是一定的,我們就說這兩種量成反比例關(guān)系,這兩個量就是反比例關(guān)系。
生2:在判斷時,我們應(yīng)該運用學(xué)過的知識,靈活判斷,而不能看表面,比如老師出的最后一道題。
師:同學(xué)們說得真好,希望同學(xué)們課后能利用時間找一找生活中還有哪些量是成反比例的量,以幫助自己更好的認識反比例。
教學(xué)反思:
本節(jié)課內(nèi)容比較抽象、難懂,學(xué)生掌握有一定得困難。怎樣化解這一教學(xué)難點,使學(xué)生有效地理解和掌握這一重點內(nèi)容呢?我在本課的教學(xué)中做了一些嘗試。
一、創(chuàng)設(shè)情境,激發(fā)求知欲望。
我從學(xué)生身邊發(fā)掘素材,組織活動,讓學(xué)生從活動中發(fā)現(xiàn)數(shù)學(xué)問題,從而引入學(xué)習(xí)內(nèi)容和學(xué)習(xí)目標(biāo)。這就激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,激起了自主參與的積極性和主動性,為自主探究新知較好的創(chuàng)設(shè)了現(xiàn)實背景。
二、深入探究,理解涵義
在演示的基礎(chǔ)上,我又不失時機地組織學(xué)生合作學(xué)習(xí),討論、分析,因而取得滿意的效果:學(xué)生自己弄清了成反比例的兩種量之間的數(shù)量關(guān)系,初步認識了反比例的涵義,體驗了探索新知、發(fā)現(xiàn)規(guī)律的樂趣。
三、比較猜想,歸納規(guī)律
我考慮到例題比較相近,因此要注意學(xué)習(xí)方式必須加以改變。因此我采取把自主權(quán)交給學(xué)生方式,營造了民主、寬松、和諧的課堂氛圍,因而對例題的學(xué)習(xí)探索取得了比較好的效果。然后通過例題與例題進行比較,歸納出成反比例的兩種量的幾個特點,再以此和正比例的意義作比較,猜想出反比例的意義。最后經(jīng)過驗證,得出反比例的意義和關(guān)系式。既達成了本課的知識目標(biāo),又培養(yǎng)了推理的能力。
《反比例意義》教學(xué)反思4
《數(shù)學(xué)課程標(biāo)準(zhǔn)》中指出:“學(xué)生的數(shù)學(xué)學(xué)習(xí)內(nèi)容應(yīng)當(dāng)是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的,這些內(nèi)容要有利于學(xué)生主動地進行觀察、實驗、猜測、驗證、推理與交流等數(shù)學(xué)活動!币虼松贤赀@節(jié)課我比較滿意的'地方有:
一、猜想導(dǎo)課,激發(fā)探究愿望
猜想是一種創(chuàng)造性思維。牛頓說:“沒有大膽的猜想,就沒有偉大的發(fā)明和發(fā)現(xiàn)!闭n一開始我就引導(dǎo)學(xué)生猜測兩種量還可能成什么比例,學(xué)生很自然想到反比例,然后我問學(xué)生想學(xué)會反比例的哪些知識,再讓學(xué)生猜測這些知識,對反比例的意義展開合理的猜想。這一環(huán)節(jié)設(shè)計巧妙,符合學(xué)生的認知規(guī)律,同時也激起了學(xué)生探究問題的強烈愿望。
二、創(chuàng)造性地使用教材
這節(jié)課教材上的例題是由例一變化來的,教學(xué)正比例時,我也是自己重新編寫了例題,因為我感覺利用圓柱的體積、底面積和高這三種量認識正、反比例對學(xué)生來說有些抽象,不接近生活。因此,我借鑒了學(xué)生讀《安徒生童話選》這一事例,學(xué)生感覺這就是發(fā)生在學(xué)生身上的事,親切易懂,并且愿意在這個表格中找尋規(guī)律,進而總結(jié)出反比例的意義。
《反比例意義》教學(xué)反思5
首先簡單復(fù)習(xí)了一次函數(shù)、正比例函數(shù)的表達式,目的是想讓學(xué)生清楚每種函數(shù)都有其特有的表達式,對反比例函數(shù)表達式的總結(jié)作了一個鋪墊。其次利用題組(一)題組(二)對反比例函數(shù)的三種表示方法進行鞏固和熟悉。
例題非常簡單,在例題的處理上我注重了學(xué)生解題步驟的培養(yǎng),同時通過兩次變式進一步鞏固解法,并拓寬了學(xué)生的思路。在變式訓(xùn)練之后,我又補充了一個綜合性題目的例題,(在上學(xué)期曾有過類似問題的,由于時間的久遠學(xué)生不是很熟悉)但在補充例題的處理上點撥不到位,導(dǎo)致這個問題的解決有點走彎路。
題組(三)在本節(jié)既是知識的鞏固又是知識的檢測,通過這組題目的'處理,發(fā)現(xiàn)學(xué)生對本節(jié)知識的掌握還可以。從整體來看,時間有點緊張,小結(jié)很是倉促,而且是由老師代勞了,沒有讓學(xué)生來談收獲,在這點有些包辦的趨勢。
雖然在題目的設(shè)計和教學(xué)設(shè)計上我注重了由淺入深的梯度,但有些問題的處理方式不是恰到好處,有的學(xué)生課堂表現(xiàn)不活躍,這也說明老師沒有調(diào)動起所有學(xué)生的學(xué)習(xí)積極性。
《反比例意義》教學(xué)反思6
課堂教學(xué)是對學(xué)生進行思想品德教育的最有利時機,數(shù)學(xué)教材本身也蘊含著豐富的思想教育內(nèi)容。我在教學(xué)時,經(jīng)常結(jié)合學(xué)生的實際,采用靈活多樣的方法,挖掘教材中的思想教育內(nèi)容,有針對性的對學(xué)生進行思想品德教育。例如,出示小朋友讀《安徒生童話選》例題時,我告訴學(xué)生在課余時間要多讀書,增長知識;在練習(xí)李明騎自行車的練習(xí)時,提醒學(xué)生在上學(xué)放學(xué)路上要注意交通安全。簡短、溫馨的話語,溫暖滋潤了學(xué)生的心,拉近了師生的距離。
根據(jù)我自己的反思及聽課老師的點評,本節(jié)課還需改進的地方有:
一、復(fù)習(xí)正比例的知識時分的過細,只復(fù)習(xí)正比例的意義就可以了,這樣學(xué)生就可以根據(jù)正比例的意義判斷正比例,為學(xué)習(xí)反比例奠定基礎(chǔ),還可以節(jié)約時間。
二、教師在課堂上要更加用心的傾聽學(xué)生的發(fā)言,發(fā)現(xiàn)學(xué)生不規(guī)范的語言要及時提醒更改。例如有個別學(xué)生說:一個量擴大,另一個量增加,5乘以6,這些地方平時我都提醒學(xué)生注意,但是這節(jié)課沒有及時糾正。
三、教師對學(xué)生的評價性語言要豐富,富有針對性,能調(diào)動學(xué)生的積極性,培養(yǎng)自信心。
四、反比例的知識是個難點,很抽象,學(xué)生往往硬套意義來判斷,因此,講解例題和練習(xí)時,要多設(shè)計圖表型的'題目,讓學(xué)生形象的看到兩個量的變化規(guī)律,直觀的計算、比較出兩個量的積一定,簡明的理解反比例的意義。
五、數(shù)學(xué)課上,計算題、應(yīng)用題和正、反比例的意義等內(nèi)容主要靠學(xué)生分析、對比、概括、判斷等,有時整節(jié)課枯燥無味,如何讓這種課也能變得生動有趣,活潑精彩,還需要教師好好思考。
《反比例意義》教學(xué)反思7
《反比例的意義》一課是北師大版六年級下冊教學(xué)內(nèi)容,它是在教學(xué)《正比例的意義》的基礎(chǔ)上的認識,因此在教學(xué)設(shè)計上,分為三步:
第一,先從復(fù)習(xí)正比例開始,復(fù)習(xí)成正比例的條件和特點。通過"說一說成正比例的兩個量是怎樣變化"和"判斷兩個量是否成正比例"的練習(xí),讓學(xué)生回顧"一種量隨著另一種量的變化而相應(yīng)變化,兩種量之間的比值一定。"的正比例的意義。然后引入新課題——反比例。
(從課堂的效果看,感覺在這個環(huán)節(jié)上的設(shè)計還是比較傳統(tǒng)化,學(xué)生的回答中規(guī)中矩,學(xué)生的積極性和投入性不是很高,課堂氣氛稍顯沉悶。課后我想如果這樣設(shè)計:給出路程,速度,時間,問怎樣組合才能符合正比例的要求接著小結(jié),"既然有正比例,那就有…"(讓學(xué)生說出"反比例")從而引出課題《反比例》,引出課題后,讓學(xué)生先根據(jù)正比例的意義猜一猜什么是反比例,不管學(xué)生猜的對與錯,讓學(xué)生初步感知反比例,這樣會不會更能調(diào)動起學(xué)生的積極性和學(xué)生的發(fā)散思維,為后面更好的學(xué)習(xí)作鋪墊)
第二,通過例2與例3兩個情境(如果按教材的安排先講例1,覺得會增加難度,讓學(xué)生不知所以,于是這節(jié)課暫不講例1),讓學(xué)生了解反比例的意義以及特點,A,路程一定,速度與時間的關(guān)系;B,果汁總量一定,分的杯數(shù)與每杯的果汁量的關(guān)系。然后讓學(xué)生自己總結(jié)出反比例的意義和成反比例的條件:一種量變化,另一種量也隨著相反變化,在變化過程中,兩種量的乘積一定。
(這個環(huán)節(jié)的設(shè)計,我采用了與教學(xué)正比例時同樣的教學(xué)程序。考慮到上一節(jié)課的研究方法學(xué)生已經(jīng)有了一定的認識,所以采取了放手的形式,引導(dǎo)后就直接把研究和討論的要求給學(xué)生,讓學(xué)生仿照正比例的學(xué)習(xí)再次的研究反比例的意義。但在教學(xué)過程中,感覺還是扶著學(xué)生走,有點放不開。)
第三,在學(xué)生理解反比例意義的基礎(chǔ)上,讓學(xué)生通過練習(xí)嘗試判斷給出的'兩種量,是否成反比例。
1,在教學(xué)的過程中,能注意生活與實際的相結(jié)合,通過生活中的兩個情境引導(dǎo)學(xué)生理解反比例,讓學(xué)生容易上手,也容易去判斷。
2,在提問的方面,基本兼顧了優(yōu)生和中下生,但感覺面不夠廣。學(xué)生的回答很完整,而且也有條理性,感覺是平常課堂上要求的結(jié)果反映。
3,在教學(xué)的設(shè)計上,條理是清晰的,思路是明確的,但感覺還是有點不夠活。如果讓學(xué)生自己來設(shè)計問題,讓學(xué)生互相提問題,編問題,讓學(xué)生自己來探索,自己去提問,自己去發(fā)現(xiàn),我想,這樣可能會更好的調(diào)動起學(xué)生的積極性,發(fā)揮學(xué)生的質(zhì)疑能力和創(chuàng)造力,效果一定會更好。
《反比例意義》教學(xué)反思8
學(xué)習(xí)了正反比例的意義后,學(xué)生接受的效果并不理想,特別是離開具體數(shù)據(jù)根據(jù)數(shù)量關(guān)系判斷成什么比例時問題比較大,一部分同學(xué)對于這兩種比例關(guān)系的意義比較模糊。為了幫助學(xué)生理解辨析這兩種比例關(guān)系,我利用了一節(jié)課時間進行了對比整理,讓學(xué)生在比較的`過程中發(fā)現(xiàn)兩種比例關(guān)系的異同后,總結(jié)出判斷的三個步驟:第一步先找相關(guān)聯(lián)的兩個量和一定的量;第二步列出求一定量的數(shù)量關(guān)系式;第三步根據(jù)正反比例的關(guān)系式對照判斷是比值一定還是乘積一定,從而確定成什么比例關(guān)系。學(xué)生根據(jù)這三個步驟做有關(guān)的判斷練習(xí)時,思路清晰了,也找到了一定的規(guī)律和竅門,不再是一頭霧水了,逐漸地錯誤減少了?磥碓谝恍└拍钚缘慕虒W(xué)中必要的點撥引導(dǎo)是不能少的,這時就需要充分發(fā)揮教師的主導(dǎo)作用,學(xué)生的理解能力是在日積月累的過程中培養(yǎng)起來的,教給學(xué)生一定解題的技巧和方法能提高教學(xué)效率。
《反比例意義》教學(xué)反思9
在教學(xué)反比例的意義時,我首先是聯(lián)系舊知、滲透難點。因為反比例的意義這一部分的內(nèi)容的編排跟正比例的意義比較相似,在教學(xué)反比例的意義時,我以學(xué)生學(xué)習(xí)的正比例的意義為基礎(chǔ),提出自主學(xué)習(xí)“要求”,讓學(xué)生主動、自覺地去觀察、分析、概括、發(fā)現(xiàn)規(guī)律。
對于學(xué)生來說,數(shù)量關(guān)系并不陌生,在以前的應(yīng)用題學(xué)習(xí)中是反復(fù)強調(diào)過的,因此,學(xué)生觀察、分析、概括起來是較為輕松的。當(dāng)學(xué)完例1時,我并沒有急于讓學(xué)生概括出反比例的意義,而是讓學(xué)生按照學(xué)習(xí)例1的方法學(xué)習(xí)試一試,接著對例1和試一試進行比較,得出它們的相同點,在此基礎(chǔ)上來揭示反比例的.意義,就顯得水道渠成了。
然后,再通過說一說,讓學(xué)生對兩種相關(guān)聯(lián)的量進行判斷,以加深學(xué)生對反比例意義的理解。最后,通過學(xué)生對正反比例意義的對比,加強了知識的內(nèi)在聯(lián)系,通過區(qū)別不同的概念,鞏固了知識。通過這節(jié)課的教學(xué),我深深地體會到:要上好一節(jié)數(shù)學(xué)課很難,要上好每一節(jié)數(shù)學(xué)課就更難,原因多多……這節(jié)課課前我雖做了充分的準(zhǔn)備,但還是存在一些問題。比如練習(xí)題安排難易不到位。由于學(xué)生剛接觸反比例的意義,應(yīng)多練習(xí)學(xué)生接觸較多的題目,使學(xué)生的基礎(chǔ)得到鞏固,不能讓難題把學(xué)生剛建立起的知識結(jié)構(gòu)沖跨。
《反比例意義》教學(xué)反思10
反比例的意義的教學(xué),考慮到前面正比例的教學(xué),所以在教學(xué)上就采用了正比例這樣的教學(xué)程序。通過逐層深化的方法慢慢幫助學(xué)生建立反比例的正確意義。由具體數(shù)據(jù)和表格式的'例題的教學(xué)到具體數(shù)量之間的關(guān)系的判斷。然后再到一些比較特別的例子的判斷,從而慢慢形成反比例的正確理解。
因為反比例的意義這一部分內(nèi)容的編排跟正比例的意義比較相似,在教學(xué)反比例的意義時,我以學(xué)生學(xué)習(xí)正比例的意義為基礎(chǔ),采取了放手的形式,通過開始教師引導(dǎo)后就直接把研究和討論的要求交給了學(xué)生,在學(xué)生之間創(chuàng)設(shè)了一種相互交流、相互合作、相互幫助的關(guān)系,讓學(xué)生主動、自覺地去觀察、分析、概括、發(fā)現(xiàn)規(guī)律,這樣不僅僅是教會了學(xué)生學(xué)習(xí)的內(nèi)容,還培養(yǎng)了學(xué)生的自學(xué)能力。
本堂課是在學(xué)生學(xué)習(xí)了正比例的基礎(chǔ)上學(xué)習(xí)反比例,由于學(xué)生有了前面學(xué)習(xí)正比例的基礎(chǔ),加上正比例與反比例在意義上研究的時候存在著一定的共性,因此學(xué)生在整堂課的思維上與前面學(xué)習(xí)的正比例相比有明顯的提高。但是這一節(jié)課還是出現(xiàn)一些學(xué)生注意力不夠集中的情況。同時在教學(xué)中由于小組合作的關(guān)系,個別學(xué)困生沒有做到較好的參與。
《反比例意義》教學(xué)反思11
一、教材分析
反比例函數(shù)是初中階段所要學(xué)習(xí)的三種函數(shù)中的一種,是一類比較簡單但很重要的函數(shù),現(xiàn)實生活中充滿了反比例函數(shù)的例子。因此反比例函數(shù)的概念與意義的教學(xué)是基礎(chǔ)。
二、學(xué)情分析
由于之前學(xué)習(xí)過函數(shù),學(xué)生對函數(shù)概念已經(jīng)有了一定的認識能力,另外在前一章我們學(xué)習(xí)過分式的知識,因此為本節(jié)課的教學(xué)奠定的一定的基礎(chǔ)。
三、教學(xué)目標(biāo)
知識目標(biāo):理解反比例函數(shù)意義;能夠根據(jù)已知條件確定反比例函數(shù)的表達式.
解決問題:能從實際問題中抽象出反比例函數(shù)并確定其表達式.情感態(tài)度:讓學(xué)生經(jīng)歷從實際問題中抽象出反比例函數(shù)模型的過程,體會反比例函數(shù)來源于實際.
四、教學(xué)重難點
重點:理解反比例函數(shù)意義,確定反比例函數(shù)的表達式.
難點:反比例函數(shù)表達式的確立.
五、教學(xué)過程
。1)京滬線鐵路全程為1463km,某次列車的平均速度v(單位:km/h)隨此次列車的.全程運行時間t(單位:h)的變化而變化;
。2)某住宅小區(qū)要種植一個面積1000m2的矩形草坪,草坪的長y(單
位:m)隨寬x(單位:m)的變化而變化。
請同學(xué)們寫出上述函數(shù)的表達式
14631000(2)y= tx
k可知:形如y=(k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù),其中xx(1)v=
是自變量,y是函數(shù)。
此過程的目的在于讓學(xué)生從實際問題中抽象出反比例函數(shù)模型的過程,體會反比例函數(shù)來源于實際.由于是分式,當(dāng)x=0時,分式無意義,所以x≠0。
當(dāng)y=中k=0時,y=0,函數(shù)y是一個常數(shù),通常我們把這樣的函數(shù)稱為常函數(shù)。此時y就不是反比例函數(shù)了。
舉例:下列屬于反比例函數(shù)的是
(1)y= (2)xy=10 (3)y=k-1x (4)y= -
此過程的目的是通過分析與練習(xí)讓學(xué)生更加了解反比例函數(shù)的概念問已知y與x成反比例,y與x-1成反比例,y+1與x成反比例,y+1與x-1成反比例,將如何設(shè)其解析式(函數(shù)關(guān)系式)
已知y與x成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y=
k x?1
k已知y+1與x成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y+1= xkxkxkxkx2x已知y與x-1成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y=
已知y+1與x-1成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y+1= k x?1此過程的目的是為了讓學(xué)生更深刻的了解反比例函數(shù)的概念,為以后在求函數(shù)解析式做好鋪墊。
例:已知y與x2反比例,并且當(dāng)x=3時y=4
(1)求出y和x之間的函數(shù)解析式
。2)求當(dāng)x=1.5時y的值
解析:因為y與x2反比例,所以設(shè)y?k,只要將k求出即可得到y(tǒng)x2
和x之間的函數(shù)解析式。之后引導(dǎo)學(xué)生書寫過程。能從實際問題中抽象出反比例函數(shù)并確定其表達式最后學(xué)生練習(xí)并布置作業(yè)
通過此環(huán)節(jié),加深對本節(jié)課所內(nèi)容的認識,以達到鞏固的目的。
六、評價與反思
本節(jié)課是在學(xué)生現(xiàn)有的認識基礎(chǔ)上進行講解,便于學(xué)生理解反比例函數(shù)的概念。而本節(jié)課的重點在于理解反比例函數(shù)意義,確定反比例函數(shù)的表達式.應(yīng)該對這一方面的內(nèi)容多練習(xí)鞏固。
《反比例意義》教學(xué)反思12
(1)對教材內(nèi)容安排的思考
本堂課是在學(xué)生學(xué)習(xí)了正比例的基礎(chǔ)上學(xué)習(xí)反比例,由于學(xué)生有了前面學(xué)習(xí)正比例的基礎(chǔ),加上正比例與反比例在意義上研究的時候存在有一定的共性,因此學(xué)生在整堂課的學(xué)習(xí)上與前面學(xué)習(xí)的正比例相比有明顯的提高。
(2)對練習(xí)題型、題量的思考
第一堂課在教學(xué)的時候,對于課本上的練一練沒有進行選擇,要求學(xué)生全部解答,結(jié)果發(fā)現(xiàn)學(xué)生化的時間比較多,而且效果也不是特別的理想。有了上次的經(jīng)驗,教師做適當(dāng)?shù)难a充和引導(dǎo),在第二節(jié)課的時候,學(xué)生的完成情況就比較理想,時間不多效率也高。
另外,由于在課始的導(dǎo)入環(huán)節(jié)中的未知每本頁數(shù)與裝訂的'本書的求解就已經(jīng)知道求解方法,所遇課堂學(xué)生就沒有刻意的去講解,結(jié)果從課后的練習(xí)第二題來看,學(xué)生的掌握情況不是很好,雖然有些同學(xué)已經(jīng)利用的了反比例的方法解答。后來想想本堂課學(xué)習(xí)的是反比例,既然已經(jīng)學(xué)習(xí)了反比例,對于課后安排的這樣的習(xí)題就不應(yīng)該還只是利用上節(jié)課的方法去解答,應(yīng)該很好的把這堂課所學(xué)習(xí)到的知識利用起來,一來是學(xué)生進一步理解反比例,二來可以為后面學(xué)生學(xué)習(xí)利用反比例解答應(yīng)用題留下伏筆。
(3)對正、反比例數(shù)量關(guān)系的書寫的一點思考
在課堂上講解:長方形的面積一定,它的長和寬。這道題是,想到三角形是否學(xué)生也能正確的解答,于是就補充了:三角形的面積一定,它的底與相應(yīng)的高是不是成反比例?為什么?
這個問題的提出,使我對于為什么教材在安排上引入了利用字母表示有了更好的理解,起初不太清楚為什么要用字母表示,現(xiàn)在想想,字母的標(biāo)識其實是最能用數(shù)學(xué)語言來判斷是不是成反比例,所以可以寫成ah=s(一定)來說明底和高成反比例。這樣學(xué)生在書寫數(shù)量關(guān)系的時候,思維方法就會更明確。
《反比例意義》教學(xué)反思13
我在反比例函數(shù)的意義的教學(xué)中做了一些嘗試。由于學(xué)生有一定的函數(shù)知識基礎(chǔ),并且有正比例的研究經(jīng)驗,這為反比例的數(shù)學(xué)建模提供了有利條件,教學(xué)中利用類比、歸納的數(shù)學(xué)思想方法開展數(shù)學(xué)建;顒。
一、創(chuàng)設(shè)情景,引入新課。
我選擇了課本上的探究素材,讓學(xué)生從生活實際中發(fā)現(xiàn)數(shù)學(xué)問題,從而引入學(xué)習(xí)內(nèi)容。因為反比例的意義這一部分的內(nèi)容的編排跟正比例的意義比較相似,在教學(xué)反比例的意義時,我以學(xué)生學(xué)習(xí)的正比例的意義為基礎(chǔ),在學(xué)生之間創(chuàng)設(shè)了一種相互交流、相互合作、相互幫助的`關(guān)系,讓學(xué)生主動、自覺地去觀察、分析問題再組織學(xué)生通過充分討論交流后得出它們的相同點,概括、發(fā)現(xiàn)規(guī)律,在此基礎(chǔ)上來揭示反比例的意義,構(gòu)建反比例的數(shù)學(xué)模型就顯得水到渠成了。
二、深入探究,理解涵義
為了使學(xué)生進一步弄清反比例函數(shù)中兩種量之間的數(shù)量關(guān)系,加深理解反比例的涵義,體驗探索新知、發(fā)現(xiàn)規(guī)律的樂趣。我設(shè)計了例題1使學(xué)生對反比例的一般型的變式有所認識,設(shè)計例題2使學(xué)生從系數(shù)、指數(shù)進一步領(lǐng)會反比例的解析式條件,至此基本完成反比例的數(shù)學(xué)的建模。以上活動力求問題有梯度、由淺入深的開展建;顒印=虒W(xué)中按設(shè)計好的思路進行,達到了預(yù)計的效果。此環(huán)節(jié)暴露的問題是:學(xué)生逐漸感受了反比關(guān)系,但在語言組織上有欠缺,今后應(yīng)注意對學(xué)生數(shù)學(xué)語言表達方面的訓(xùn)練。
三、應(yīng)用拓展:
設(shè)置例題3的目的是讓學(xué)生得到求反比例函數(shù)解析式的方法:待定系數(shù)法。提高學(xué)生的分析能力并獲得數(shù)學(xué)方法,積累數(shù)學(xué)經(jīng)驗。設(shè)置兩個練習(xí),讓學(xué)生充分理解并掌握反比例函數(shù)的應(yīng)用。
另外課堂中指教者的示范作用體現(xiàn)的不是很好,板書不夠端正,肢體語言的多余動作,需要在今后的教學(xué)過程中嚴格要求自己,方方面面進行改善!本次公開課得到備課組長劉燕老師的認真指導(dǎo)。
《反比例意義》教學(xué)反思14
我在教學(xué)“正比例和反比例的意義”這部分內(nèi)容著重使學(xué)生理解正反比例的意義。正、反比例關(guān)系是比較重要的一種數(shù)量關(guān)系,學(xué)生理解并掌握了這種數(shù)量關(guān)系,可以應(yīng)用它解決一些簡單的正、反比例方面的實際問題。
生活是數(shù)學(xué)知識的源泉,正反比例是來源于生活的。我在本課教學(xué)中,首先通過系列訓(xùn)練,將教材知識轉(zhuǎn)換為學(xué)生喜聞樂見的'形式,不僅使學(xué)生思路清晰地掌握知識體系,而且能在規(guī)律上點撥啟發(fā),所以學(xué)生主動性高,回答問題時能從不同角度、不同方位去思考,既開動了學(xué)生腦筋,又培養(yǎng)了學(xué)習(xí)興趣。
其次,能充分尊重學(xué)生主體,靈活運用知識,聯(lián)系生活實際,為學(xué)生提供豐富的感性材料,重過程練習(xí),讓學(xué)生親自經(jīng)歷知識的發(fā)生、發(fā)展過程,注重培養(yǎng)探究、創(chuàng)新意識,以達到教師主導(dǎo)與學(xué)生主體的有機結(jié)合,使零散的知識得到有效整合和擴展延伸,形成學(xué)生自己固有的知識體系.
課上學(xué)生基本能夠正確判斷,說理也較清楚。但是在課后作業(yè)中,發(fā)現(xiàn)了不少問題,對一些不是很熟悉的關(guān)系如:車輪的直徑一定,所行使的路程和車輪的轉(zhuǎn)數(shù)成何比例?出粉率一定,面粉重量和小麥的總重量成何比例?學(xué)生在判斷時較為困難,說理也不是很清楚。可能這是學(xué)生先前概念理解不夠深的緣故吧!以后在教學(xué)這些概念時,應(yīng)該有前瞻性,引導(dǎo)學(xué)生對以前所學(xué)的知識進行相關(guān)的復(fù)習(xí),然后在進行相關(guān)形式的練習(xí),我想對學(xué)生的后繼學(xué)習(xí)必然有所幫助。
教學(xué)有法,但教無定法,貴在得法,我認為只要切合學(xué)生實際的,讓師生花最短的時間獲得最大的學(xué)習(xí)效益的方法都是成功的,都是有價值的,我以后會大膽嘗試,努力創(chuàng)造民主和諧、輕松愉悅、積極上進,共同發(fā)展的新課堂吧!
《反比例意義》教學(xué)反思15
今天上午的第二節(jié)課,我試講了《正、反比例的意義》。這節(jié)課上完以后,給我感觸最深的是第一層次(認識量、變量,建立兩種相關(guān)聯(lián)的`量這個概念)的教學(xué)。這個環(huán)節(jié)處理得很不好(具體的下面介紹),學(xué)生沒有很好地建立“兩種相關(guān)聯(lián)的量”這個概念,也就影響到了對正、反比例意義的理解。
我自己很清楚,不管怎么說,“兩種相關(guān)聯(lián)的量”這個概念教學(xué)的失誤是我造成的,后來我明白了,如果在學(xué)生回答了“路程和時間這兩種量在變化”后,我順勢說一句“讀一讀這些數(shù)據(jù)”,隨后再接著問:“誰隨著誰變呀?”這樣就會很順暢地得出:路程隨著時間的變化而變化(或是時間隨著路程變),我們就把這兩種量叫做兩種相關(guān)聯(lián)的量。最后再用表(2)中的兩種量來鞏固這個概念。這樣的教學(xué)設(shè)計應(yīng)該就能夠使學(xué)生很好地建立這個概念了,也就圓滿地完成了這一層的教學(xué)內(nèi)容。
【《反比例意義》教學(xué)反思】相關(guān)文章:
《反比例的意義》教學(xué)反思03-14
《反比例意義》教學(xué)反思11-17
反比例意義教學(xué)反思01-04
《反比例意義》教學(xué)反思 15篇12-17
反比例意義教學(xué)反思15篇02-13
反比例意義教學(xué)反思(15篇)02-14
反比例意義教學(xué)反思精選15篇02-21