《去分母解一元一次方程》教學反思10篇
身為一位優(yōu)秀的老師,我們的工作之一就是教學,教學反思能很好的記錄下我們的課堂經(jīng)驗,教學反思應該怎么寫才好呢?下面是小編收集整理的《去分母解一元一次方程》教學反思,歡迎閱讀與收藏。
《去分母解一元一次方程》教學反思1
本節(jié)課由一道著名的求未知數(shù)的問題,得到方程,這個方程的特點就是有些系數(shù)是分數(shù),這時學生紛紛用合并同類項,把系數(shù)化為1的變形方法來解,但在合并同類項時幾個分數(shù)的求和,有相當一部分學生會感到困難且容易出錯,再看方程怎樣解呢?學生困惑了,不知從何處下手了,此時,需要尋求一種新的變形方法來解它求知的欲望出來了,想到了去分母,就是化去分母,把分數(shù)系數(shù)化為整數(shù),使解方程中的計算方便些。 在解方程中去分母時,我發(fā)現(xiàn)存在這樣的一些問題:
1、部分學生不會找各分母的最小公倍數(shù),這點要適當指導。
2、用各分母的最小公倍數(shù)乘以方程兩邊的.項時,漏乘不含分母的項。
3、當減式中分子是多項式且分母恰好為各分母的最小公倍數(shù)時,去分母后,分子沒有作為一個整體加上括號,容易錯符號。如解方程方程兩邊都乘以10后,得到5×3x+1-10×2=3x-2-2×2x+3其中3x+1,2x+3沒有加括號,弄錯了符號對解題步驟的歸納說法基本一致。就學生的表達能力還有些欠佳,需要提高語言組織能力。
本節(jié)課習題設計的不夠充分,學生在上課的過程中訓練強度達不到,當分母是小數(shù)時,找最小公倍數(shù)是困難的,我們要引導學生:
1、把小數(shù)的分母化為整數(shù)的分母。如把方程中的前兩項分子、分母同乘以10,或前兩項分母同乘以 ,則兩項的分母分別成為2和5,即原方程變形為整數(shù)。
2、想辦法將分母變?yōu)?。等式兩邊同乘以分母的最小公倍數(shù)10。
3、學生有疑惑的是先去括號呢,還是先去分母,怎樣計算會簡便些呢?
在本節(jié)課的教學過程中,我發(fā)現(xiàn)學生對以上活動都比較感興趣,特別是對討論的環(huán)節(jié)每個學生都想發(fā)表自己的看法。對解題步驟的歸納說法基本一致,就學生的表達能力還有些欠佳,需要提高語言組織能力。只要我們善于引導學生認真觀察,多思考多練習,抓住特點,就能找到一些解方程的技巧方,在以后的教學中要給學生準備一部分提高能力的題,達到檢測和拓展數(shù)學思維的目的。
另外,從學生的作業(yè)中反饋出:對去分母的第一步還存在較大的問題,是不是說明過程的敘述不太清楚,部分學生摸棱兩可,真真自己做的時候就會暴露出不懂的,這也提醒我今后的教學中在關鍵的知識點上要下“功夫”,切不可輕易的解決問題。備課時應該多多思考學生的具體情況,然后再修改初備的教案,盡量完善,盡量完美。
但我還是感覺到:我講的太多;主動權還沒有放心大膽地交還給學生,否則情況會可能會更好。這也是我的缺點,應該化大力氣來調(diào)整自己。另外也應該不斷地充實自己其他方面地知識,把數(shù)學課上地生動活潑。
《去分母解一元一次方程》教學反思2
從學生的作業(yè)中反饋出:對去分母的第一步還存在較大的問題,是不是說明過程的敘述不太清楚,部分學生摸棱兩可,真真自己做的時候就會暴露出不懂的,這也提醒我今后的教學中在關鍵的知識點上要下“功夫”,切不可輕易的解決問題(想當然)。備課時應該多多思考學生的具體情況,然后再修改初備的教案,盡量完善,盡量完美。
在評課中,盡管其他老師沒有多提意見,但我還是感覺到:我講的太多;主動權還沒有放心大膽地交還給學生,否則情況會可能會更好。這也是我的缺點,應該化大力氣來調(diào)整自己。另外也應該不斷地充實自己其他方面地知識,把數(shù)學課上地生動活潑
1.去分母后原來的分子沒有添加括號
例1解方程: .
分析:分數(shù)線實際上包含括號的意思,去分母后原來的`分子應該添上括號。
2.去分母時最小公倍數(shù)沒有乘到每一項
例2解方程:.
分析:去分母時最小公倍數(shù)沒有乘到每一項,特別是不含有分數(shù)的項。
3.去括號導致錯誤
4.運用乘法分配律時,漏乘括號里的項。
例3解方程:.
分析:去括號時沒有把括號外的數(shù)分配到括號中的每一項。
5.括號前面是“-”號時,去括號要使括號里的每一項變號。
《去分母解一元一次方程》教學反思3
從學生的作業(yè)中反饋出:對去分母的第一步還存在較大的問題,是不是說明過程的敘述不太清楚,部分學生摸棱兩可,真真自己做的時候就會暴露出不懂的,這也提醒我今后的教學中在關鍵的知識點上要下“功夫”,切不可輕易的解決問題(想當然)。備課時應該多多思考學生的具體情況,然后再修改初備的'教案,盡量完善,盡量完美。
1、去分母后原來的分子沒有添加括號。
例1:解方程。
分數(shù)線實際上包含括號的意思,去分母后原來的分子應該添上括號。
2、去分母時最小公倍數(shù)沒有乘到每一項。
例2:解方程。
去分母時最小公倍數(shù)沒有乘到每一項,特別是不含有分數(shù)的項。
3、去括號導致錯誤。
4、運用乘法分配律時,漏乘括號里的項。
例3:解方程。
去括號時沒有把括號外的數(shù)分配到括號中的每一項。
5、括號前面是“-”號時,去括號要使括號里的每一項變號。
《去分母解一元一次方程》教學反思4
由數(shù)學文化中的實際問題導入,一個數(shù),它的.三分之二,它的二分之一,它的全部,它們總共是33,求這個數(shù)。
師引導學生分析,設元,列方程,解方程,作答。
重點分析了如何去分母?墒谴蟛糠值膶W生不會用短除法找最小公倍數(shù),于是我又給學生補講短除法。
講完短除法,再講去分母的方法。
去分母,就是根據(jù)等式的性質(zhì)2,在方程兩邊分別乘以最小公倍數(shù)后約去分母。學生們在去分母過程中,常踩著幾個坑:1,漏乘;2,分子是多項式時忘記加括號。
雖然我一直強調(diào)它們,可是初學者都常踩著它們。
我想,雖然強調(diào)過,但畢競這些內(nèi)容有些抽象,所以學生不易習得。
最終只有通過再針對訓練:精講一個例子,再讓生進行只去分母不移項的解一元一次方程的訓練,這樣更具有針對性,效果更好。
《去分母解一元一次方程》教學反思5
這點要適當指導,② 用各分母的最小公倍數(shù)乘以方程兩邊的項時,漏乘不含分母的項,③ 當減式中分子是多項式且分母恰好為各分母的最小公倍數(shù)時,去分母后,分子沒有作為一個整體加上括號,容易錯符號。如解方程方程兩邊都乘以10后,得到 5×3x +1-10×2 = 3x -2-2× 2x +3其中3x +1, 2x +3 沒有加括號,弄錯了符號對解題步驟的歸納說法基本一致。就學生的表達能力還有些欠佳,需要提高語言組織能力。
本節(jié)課習題設計的不夠充分,學生在上課的過程中訓練強度達不到,當分母是小數(shù)時,找最小公倍數(shù)是困難的,我們要引導學生:
、侔研(shù)的分母化為整數(shù)的分母。如 把方程中的前兩項分子、分母同乘以10,或前兩項分母同乘以 ,則兩項的分母分別成為2和5,即原方程變形為整數(shù)。
、谙朕k法將分母變?yōu)?。等式兩邊同乘以分母的最小公倍數(shù)10。
③學生有疑惑的是先去括號呢,還是先去分母,怎樣計算會簡便些呢?
在 本節(jié)課的教學過程中,我發(fā)現(xiàn)學生對以上活動都比較感興趣,特別是對討論的環(huán)節(jié)每個學生都想發(fā)表自己的看法。對解題步驟的歸納說法基本一致,就學生的表達能 力還有些欠佳,需要提高語言組織能力。只要我們善于引導學生認真觀察,多思考多練習,抓住特點,就能找到一些解方程的技巧方,在以后的教學中要給學生準備 一部分提高能力的題,達到檢測和拓展數(shù)學思維的目的。
另外,從學生的作業(yè)中反饋出:對去分母的第一步還存在較大的問題,是不是說 明過程的敘述不太清楚,部分學生摸棱兩可,真真自己做的時候就會暴露出不懂的,這也提醒我今后的教學中在關鍵的知識點上要下“功夫”,切不可輕易的解決問 題。備課時應該多多思考學生的具體情況,然后再修改初備的教案,盡量完善,盡量完美。
但我還是感覺到:我講的太多;主動權還沒有放心大膽地交還給學生,否則情況會可能會更好。這也是我的缺點,應該化大力氣來調(diào)整自己。另外也應該不斷地充實自己其他方面地知識,把數(shù)學課上地生動活潑。
反思五:解一元一次方程——去分母教學反思
本節(jié)課是在學習了一元一次方程解法的.基礎上學習的,它與前面所學的知識之間有著緊密的聯(lián)系,學生在學習本節(jié)課之后會初步了解了“建!钡臄(shù)學思想及基本步驟。因此本節(jié)內(nèi)容的教學首先復習一元一次方程解法的步驟,通過把實際問題用一元一次方程的解決,不僅鞏固了一元一次方程的解法,并且加深了對“建!彼枷氲睦斫狻
本節(jié)課的設計思路是從實際問題出發(fā),引導學生自主學習,積極探究,合作交流,總結(jié)提高。用列方程的方法解決實際問題,在教學過程中通過連串問題去引導學生審題、分析題意、尋找等量關系等,使學生初步了解“建!钡臄(shù)學思想。在課堂中讓學生帶著思考,帶著問題,教師組織學生討論的目的是為了充分暴露出學生的問題,讓學生在談論、合作、交流的過程中解決問題,在通過老師的總結(jié)歸納,學生的認識得到升華,因此本節(jié)課采取的是學生合作探究的教學方法。
在教學過程中,教師不斷地提出問題,明確要達到的目的,并在學生遇到困難的時候提供指導性建議,但不提供具體的解決過程和問題的答案。學生則圍繞確定的問題,在教師的指導性幫助下,通過自己的思考和相互間的交流,達到預定的目標。
顯然,這樣的教學給學生帶來的發(fā)展是多方面、多層次的,不同的學生在學習過程中都有不同程度的收獲。
這節(jié)課學生大多能積極思考,認真學習,課后作業(yè)都能及時完成。作業(yè)質(zhì)量較好,基本達到了預定的教學目標,主要存在問題是去括號時個別同學不注意符號或出現(xiàn)漏乘情況。
上了這節(jié)課,我覺得上好一節(jié)課的因素很多,也發(fā)現(xiàn)了自己很多不足的地方,在平時上課的時候,對提問的形式和語言還嫌單一。在現(xiàn)行的開放式的課堂中,關鍵是放的出去的同時要收的回來,可能是平時注入式的簡單易行,或者是不大重視,上課中的語言的漏洞很多,在以后的教學中要多加揣摩和重視,多點聽其他老師的課,盡量把他們對課堂教學處理的優(yōu)點溶進自己的教學中,進一步提高自己的教育教學水平。
《去分母解一元一次方程》教學反思6
通過上節(jié)課學習后,學生已經(jīng)掌握了用去括號、移項、合并同類項、把系數(shù)化為1這四個步驟解一元一次方程。
接下來這一節(jié)課,我們要重點討論是;
①解方程中的“去分母”,
、诟鶕(jù)實際問題列方程。這樣我們就掌握了解一元一次方程一般都采用的五步變形方法。
由一道著名的求未知數(shù)的問題,得到方程,這個方程的特點就是有些系數(shù)是分數(shù),這時學生紛紛用合并同類項,把系數(shù)化為1的變形方法來解,但在合并同類項時幾個分數(shù)的求和,有相當一部分學生會感到困難且容易出錯,再看方程
怎樣解呢?學生困惑了,不知從何處下手了,此時,需要尋求一種新的變形方法來解它,求知的欲望出來了,想到了去分母,就是化去分母,把分數(shù)系數(shù)化為整數(shù),使解方程中的計算方便些。
在解方程中去分母時,我們發(fā)現(xiàn)存在這樣的'一些問題:
、俨糠謱W生不會找各分母的最小公倍數(shù),這點要適當指導,
、谟酶鞣帜傅淖钚」稊(shù)乘以方程兩邊的項時,漏乘不含分母的項,
③當減式中分子是多項式且分母恰好為各分母的最小公倍數(shù)時,去分母后,分子沒有作為一個整體加上括號,容易錯符號。如解方程方程兩邊都乘以2后,得到2x-x+2=2,其中x+2沒有加括號,弄錯了符號。
《去分母解一元一次方程》教學反思7
通過上節(jié)課學習后,學生已經(jīng)掌握了用去括號、移項、合并同類項、把系數(shù)化為1這四個步驟解一元一次方程,接下來這一節(jié)課,我們要重點討論是:
。1)解方程中的“去分母”。
。2)根據(jù)實際問題列方程。這樣我們就掌握了解一元一次方程一般都采用的五步變形方法。
由一道著名的求未知數(shù)的問題,得到方程,這個方程的.特點就是有些系數(shù)是分數(shù),這時學生紛紛用合并同類項,把系數(shù)化為1的變形方法來解,但在合并同類項時幾個分數(shù)的求和,有相當一部分學生會感到困難且容易出錯,再看方程
怎樣解呢?學生困惑了,不知從何處下手了,此時,需要尋求一種新的變形方法來解它,求知的欲望出來了,想到了去分母,就是化去分母,把分數(shù)系數(shù)化為整數(shù),使解方程中的計算方便些。
在解方程中去分母時,我們發(fā)現(xiàn)存在這樣的一些問題:
。1)部分學生不會找各分母的最小公倍數(shù),這點要適當指導。
。2)用各分母的最小公倍數(shù)乘以方程兩邊的項時,漏乘不含分母的項。
。3)當減式中分子是多項式且分母恰好為各分母的最小公倍數(shù)時,去分母后,分子沒有作為一個整體加上括號,容易錯符號。如解方程方程兩邊都乘以2后,得到2x—x+2=2,其中x+2沒有加括號,弄錯了符號。
《去分母解一元一次方程》教學反思8
在前面的學段中,學生已學習了合并同類項、去括號等整式運算內(nèi)容。解一元一次方程就成為承上啟下的重要內(nèi)容。因此,它既是重點也是難點。我根據(jù)學生認識規(guī)律和教學的啟發(fā)性、直觀性和面向全體因材施教等教學原則,積極創(chuàng)設新穎的問題情境,以“學生發(fā)展為本,以活動為主線,以創(chuàng)新為主旨”,采用多媒體教學等有效手段,以引導法為主,輔之以直觀演示法、討論法,向?qū)W生提供充分從事數(shù)學活動的機會,激發(fā)學生的學習積極性,使學生主動參與學習的全過程
本節(jié)課由一道著名的求未知數(shù)的問題,得到方程,這個方程的特點就是有些系數(shù)是分數(shù),這時學生紛紛用合并同類項,把系數(shù)化為1的變形方法來解,但在合并同類項時幾個分數(shù)的求和,有相當一部分學生會感到困難且容易出錯,再看方程怎樣解呢?學生困惑了,不知從何處下手了,此時,需要尋求一種新的變形方法來解它求知的欲望出來了,想到了去分母,就是化去分母,把分數(shù)系數(shù)化為整數(shù),使解方程中的計算方便些。
在解方程中去分母時,我發(fā)現(xiàn)存在這樣的一些問題:①部分學生不會找各分母的最小公倍數(shù),這點要適當指導,②用各分母的最小公倍數(shù)乘以方程兩邊的項時,漏乘不含分母的項,③當減式中分子是多項式且分母恰好為各分母的最小公倍數(shù)時,去分母后,分子沒有作為一個整體加上括號,容易錯符號。如解方程方程兩邊都乘以10后,得到5×3x+1-10×2 = 3x-2-2× 2x+3
其中3x+1, 2x+3沒有加括號,弄錯了符號對解題步驟的歸納說法基本一致。就學生的表達能力還有些欠佳,需要提高語言組織能力。本節(jié)課習題設計的不夠充分,學生在上課的過程中訓練強度達不到,當分母是小數(shù)時,找最小公倍數(shù)是困難的,我們要引導學生:①把小數(shù)的.分母化為整數(shù)的分母。如把方程中的前兩項分子、分母同乘以10,或前兩項分母同乘以,則兩項的分母分別成為2和5,即原方程變形為整數(shù)。
、谙朕k法將分母變?yōu)?。等式兩邊同乘以分母的最小公倍數(shù)10。
③學生有疑惑的是先去括號呢,還是先去分母,怎樣計算會簡便些呢?
在本節(jié)課的教學過程中,我發(fā)現(xiàn)學生對以上活動都比較感興趣,特別是對討論的環(huán)節(jié)每個學生都想發(fā)表自己的看法。對解題步驟的歸納說法基本一致,就學生的表達能力還有些欠佳,需要提高語言組織能力。只要我們善于引導學生認真觀察,多思考多練習,抓住特點,就能找到一些解方程的技巧方,在以后的教學中要給學生準備一部分提高能力的題,達到檢測和拓展數(shù)學思維的目的。
另外,從學生的作業(yè)中反饋出:對去分母的第一步還存在較大的問題,是不是說明過程的敘述不太清楚,部分學生摸棱兩可,真真自己做的時候就會暴露出不懂的,這也提醒我今后的教學中在關鍵的知識點上要下“功夫”,切不可輕易的解決問題。備課時應該多多思考學生的具體情況,然后再修改初備的教案,盡量完善,盡量完美。
但我還是感覺到:我講的太多;主動權還沒有放心大膽地交還給學生,否則情況會可能會更好。這也是我的缺點,應該化大力氣來調(diào)整自己。另外也應該不斷地充實自己其他方面地知識,把數(shù)學課上地生動活潑。
。1)基本體現(xiàn)自主探究教學模式,逐步引導學生學習。
(2)對學情分析不準確,本來認為學生對工程問題會掌握的很好,不會出現(xiàn)問題,課堂會相對很輕松,但結(jié)果是學生早就忘了工程問題中的基本數(shù)量關系,復習2的填空都不能完成,嚴重影響了后續(xù)知識的學習。教師在課上臨時調(diào)節(jié)不到位,使一堂本應輕松的課變得沉悶、不能有效推進。
(3)從學習有效性考慮,對教學設計可做如下改進,一是復習中工程問題可利用例題分解完成,這樣可以為例題做鋪墊,提高審題效率,降低學習難度,使例題學習更順暢。二是例題后的變式,一道是在例題基礎上的變結(jié)論題,另一道是單獨的一道題,但是條件與例題有變化。此題不如在例題基礎上直接變條件,節(jié)省審題時間,讓學生充分體會工程問題中的數(shù)量關系的變化規(guī)律,提高學習效率。
(4)教學方法要改進,學生學習困難時研討是必要的,但不是所有問題研討都可以得出結(jié)論,所以教師點撥的作用要適時體現(xiàn)。如,學生對工程問題中的相等關系認識有困難時,教師可以通過力求方法表示整體1與各部分關系,這樣學生可以很輕松理解。
《去分母解一元一次方程》教學反思9
在學生學習了解一元一次方程一般都采用的五步變形方法以后,這節(jié)課重點探討解下列方程的技巧方法,
如在解方程30%x+70%(200-x)=200×70%中,在去分母時,方程兩邊都乘以100,化去%得:
30x+70(200-x)=200×70,有部分學生就提出疑問,為什么在200那里不乘以100?在(200-x)的里面又不乘以100呢?為了能讓學生明白,我想是否要將原方程變形為,然后再各項乘以100,寫成,最后化去分母。
又在解方程中,怎樣去分母呢?最小公倍數(shù)是什么呢?學生是有疑惑的`,當分母是小數(shù)時,找最小公倍數(shù)是困難的,我們要引導學生:
、侔研(shù)的分母化為整數(shù)的分母。如把方程中的前二項都分別分子分母同乘以10,則二項的分母分別成為5和1,即原方程變形為
②想辦法將分母變?yōu)?,即把左邊第一項分子、分母都乘以2,右邊第一項分子、分母都乘
10,則三項的分母都為1。原方程變形為2(4x-1.5)=10(1.2-x)+2
又如在解方程中,是先去括號呢,還是先去分母,怎樣計算會簡便些呢?
只要我們善于引導學生認真觀察,多思考多練習,抓住特點,就能找到一些解方程的技巧方
法。解一元一次方程一般都采用五步變形靈活應用,除此之外,據(jù)不同題型,運用一些技巧方法,就能快捷地求出其解。
《去分母解一元一次方程》教學反思10
本節(jié)課的重點是討論解一元一次方程中的去分母,此節(jié)課后就可以解各種各樣的一元一次方程,并可以歸納出解一元一次方程的一般步驟。這節(jié)課從古代埃及的紙莎草文書中的一道題切入,引出帶有分母的一元一次方程,進而討論解這類方程的方法。這個問題是:一個數(shù),它的三分之二,它的一半,它的七分之一,它的全部,加起來總共是33。求這個數(shù)。
這節(jié)課講過之后,我覺得成功之處是:歸納出解一元一次方程的一般步驟之后,我寫到黑板上四道題,讓四位學生做到黑板上,其他學生做到練習本上。做完后,再選四位學生上去改并且講評。這樣一做一改,這幾位學生都對易錯處印象深刻,做錯題目的學生再讓他們結(jié)合自己做的題,說說自己容易在哪個步驟出錯。然后再集體進行總結(jié),去分母是什么地方易錯,去括號什么地方易錯。這樣的訓練之后,我覺得這一屆的學生解方程掌握的比以前的學生好。我想,這正是新課改倡導的精神,讓學生自己動手做,思考,歸納,總結(jié),最后變成了自己的東西,不易忘記。
這節(jié)課的不足之處在于:這節(jié)課從古埃及的紙莎草文書引入,這是能反映古埃及文明的一件珍貴文物,這個選材可以起到介紹悠久的數(shù)學文明的'作用,可以讓學生感受到數(shù)學文化的熏陶,而我當時一帶而過,只讓學生自己看了看文字,忽視了對學生情感價值觀的教育。
其次,方程列出后,我提出問題,引導學生來思考怎樣把方程簡化,化成能夠解決的一元一次方程,但給學生留下的思維空間較少。有幾個思維敏捷的學生很快想到了解決問題的方法,我就沒有等更多的學生深入思考,自己得出結(jié)論。這樣造成多數(shù)學生跟著少數(shù)學生思維跑的局面,忽視了大部分學生思考---得出結(jié)論---體驗成功的過程,只照顧了少部分學生,這會導致數(shù)學的兩極分化。一部分學生總是體驗不到自己經(jīng)過認真思考,得出結(jié)論的成就感,慢慢會失去學習興趣。這是我今后應該努力解決的問題。
【《去分母解一元一次方程》教學反思】相關文章:
《解一元一次方程,去分母》教學反思10篇03-28
解一元一次方程——去分母教學反思10篇03-27
解一元一次方程移項教學反思04-07
解比例教學反思02-07
解比例的教學反思03-05
《解比例》教學反思03-14
方程的解教學反思07-10
方程的解教學反思(精選)09-09