二次函數(shù)教案
在教學(xué)工作者開展教學(xué)活動前,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。教案應(yīng)該怎么寫才好呢?以下是小編為大家整理的二次函數(shù)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
二次函數(shù)教案1
教學(xué)目標(biāo)
掌握二次函數(shù)y=ax2+bx+c的圖象與x軸的交點(diǎn)個數(shù)與一元二次方程ax2+bx+c=0的解的情況之間的關(guān)系。
重點(diǎn)、難點(diǎn):
二次函數(shù)y=ax2+bx+c的圖象與一元二次方程ax2+bx+c=0的根之間關(guān)系的探索。
教學(xué)過程:
一、情境創(chuàng)設(shè)
一次函數(shù)y=x+2的圖象與x軸的交點(diǎn)坐標(biāo)
問題1.任意一次函數(shù)的圖象與x軸有幾個交點(diǎn)?
問題2.猜想二次函數(shù)圖象與x軸可能會有幾個交點(diǎn)?可以借助什么來研究?
二、探索活動
活動一觀察
在直角坐標(biāo)系中任意取三點(diǎn)A、B、C,測出它們的縱坐標(biāo),分別記作a、b、c,以a、b、c為系數(shù)繪制二次函數(shù)y=ax2+bx+c的圖象,觀察它與x軸交點(diǎn)數(shù)量的`情況;任意改變a、b、c值后,觀察交點(diǎn)數(shù)量變化情況。
活動二觀察與探索
如圖1,觀察二次函數(shù)y=x2-x-6的圖象,回答問題:
(1)圖象與x軸的交點(diǎn)的坐標(biāo)為A(,),B(,)
(2)當(dāng)x=時,函數(shù)值y=0。
(3)求方程x2-x-6=0的解。
(4)方程x2-x-6=0的解和交點(diǎn)坐標(biāo)有何關(guān)系?
活動三猜想和歸納
(1)你能說出函數(shù)y=ax2+bx+c的圖象與x軸交點(diǎn)個數(shù)的其它情況嗎?猜想交點(diǎn)個數(shù)和方程ax2+bx+c=0的根的個數(shù)有何關(guān)系。
。2)一元二次方程ax2+bx+c=0的根的個數(shù)由什么來判斷?
這樣我們可以把二次函數(shù)y=ax2+bx+c的圖象與x軸交點(diǎn)、一元二次方程ax2+bx+c=0的實(shí)數(shù)根和根的判別式三者聯(lián)系起來。
三、例題分析
例1.不畫圖象,判斷下列函數(shù)與x軸交點(diǎn)情況。
(1)y=x2-10x+25
(2)y=3x2-4x+2
(3)y=-2x2+3x-1
例2.已知二次函數(shù)y=mx2+x-1
(1)當(dāng)m為何值時,圖象與x軸有兩個交點(diǎn)
(2)當(dāng)m為何值時,圖象與x軸有一個交點(diǎn)?
(3)當(dāng)m為何值時,圖象與x軸無交點(diǎn)?
四、拓展練習(xí)
1.如圖2,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B。
(1)請寫出方程ax2+bx+c=0的根
(2)列舉一個二次函數(shù),使其圖象與x軸交于(1,0)和(4,0),且適合這個圖象。
2.列舉一個二次函數(shù),使其圖象開口向上,且與x軸交于(-2,0)和(1,0)
五、小結(jié)
這節(jié)課我們有哪些收獲?
六、作業(yè)
求證:二次函數(shù)y=x2+ax+a-2的圖象與x軸一定有兩個不同的交點(diǎn)。
二次函數(shù)教案2
一. 教材分析
1、教材的地位及作用
函數(shù)是一種重要的數(shù)學(xué)思想,是實(shí)際生活中數(shù)學(xué)建模的重要工具,二次函數(shù)的教學(xué)在初中數(shù)學(xué)教學(xué)中有著重要的地位。本節(jié)內(nèi)容的教學(xué),在函數(shù)的教學(xué)中有著承上啟下的作用。它既是對已學(xué)一次函數(shù)及反比例函數(shù)的復(fù)習(xí),又是對二次函數(shù)知識的延續(xù)和深化,為將來二次函數(shù)一般情形的教學(xué)乃至高中階段函數(shù)的教學(xué)打下基礎(chǔ),做好鋪墊。
2.教學(xué)目標(biāo)
(1) 掌握二此函數(shù)的概念并能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識,培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣。[知識與技能目標(biāo)]
(2)讓學(xué)生經(jīng)歷觀察、比較、歸納、應(yīng)用,以及猜想、驗(yàn)證的學(xué)習(xí)過程,使學(xué)生掌握類比、轉(zhuǎn)化等學(xué)習(xí)數(shù)學(xué)的方法,養(yǎng)成既能自主探索,又能合作探究的良好學(xué)習(xí)習(xí)慣。[過程與方法目標(biāo)]
(3) 讓學(xué)生在數(shù)學(xué)活動中學(xué)會與人相處,感受探索與創(chuàng)造,體驗(yàn)成功的喜悅,[情感、態(tài)度、價值觀目標(biāo)]
3、教學(xué)的重、難點(diǎn)
重點(diǎn):二次函數(shù)的概念和解析式
難點(diǎn):本節(jié)“合作學(xué)習(xí)”涉及的實(shí)際問題有的較為復(fù)雜,要求學(xué)生有較強(qiáng)的概括能力
4、 學(xué)情分析
、賹W(xué)生已掌握一次函數(shù),反比例函數(shù)的概念,圖象的畫法,以及它們圖象的性質(zhì)。 ②學(xué)生個性活潑,積極性高,初步具有對數(shù)學(xué)問題進(jìn)行合作探究的意識與 能力。
③初三學(xué)生程度參差不齊,兩極分化已形成。
二、教法學(xué)法分析
1` 教法(關(guān)鍵詞:情境、探究、分層)
基于本節(jié)課內(nèi)容的特點(diǎn)和初三學(xué)生的.年齡特征,我以“探究式”體驗(yàn)教學(xué)法和“啟發(fā)式”教學(xué)法 為主進(jìn)行教學(xué)。讓學(xué)生在開放的情境中,在教師的 引導(dǎo)啟發(fā)下,同學(xué)的合作幫助下,通過探究發(fā)現(xiàn),讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成和應(yīng)用過程,加深對數(shù)學(xué)知識的理解。教師著眼于引導(dǎo),學(xué)生著眼于探索,側(cè)重于學(xué)生能力的提高、思維的訓(xùn)練。同時考慮到學(xué)生的個體差異,在教學(xué)的各個環(huán)節(jié)中進(jìn)行分層施教。
2、學(xué)法(關(guān)鍵詞:類比、自主、合作)
根據(jù)學(xué)生的思維特點(diǎn)、認(rèn)知水平,遵循“教必須以學(xué)為立足點(diǎn)”的教育理念,讓每一個學(xué)生自主參與整堂課的知識構(gòu)建。在各個環(huán)節(jié)中引導(dǎo)學(xué)生類比遷移,對照學(xué)習(xí)。以自主探索為主,學(xué)會合作交流,在師生互動、生生互動中讓每個學(xué)生動口,動手,動腦,培養(yǎng)學(xué)生學(xué)習(xí)的主動性和積極性,使學(xué)生由“學(xué)會”變“會學(xué)”和“樂學(xué)”。
3、教學(xué)手段
采用多媒體教學(xué),直觀呈現(xiàn)拋物線和諧、對稱的美,激發(fā)學(xué)生的學(xué)習(xí) 興趣,參與熱情,增大教學(xué)容量,提高教學(xué)效率。
三、教學(xué)過程
完整的數(shù)學(xué)學(xué)習(xí)過程是一個不斷探索、發(fā)現(xiàn)、驗(yàn)證的過程,根據(jù)新課標(biāo)要求,根據(jù)“以人為本,以學(xué)定教”的教學(xué)理念,結(jié)合學(xué)生實(shí)際,制訂以下教學(xué)流程:
(一).創(chuàng)設(shè)情境 溫故引新
以提問的形式復(fù)習(xí)一元二次方程的一般形式,一次函數(shù),反比例函數(shù)的定義,然后讓學(xué)生欣賞一組優(yōu)美的有關(guān)拋物線的圖案,創(chuàng)設(shè)情境:
(1)你們喜歡打籃球嗎?
(2)你們知道:投籃時,籃球運(yùn)動的路線是什么曲線?怎樣計(jì)算籃球達(dá)到最高點(diǎn)時的高度?
從而引出課題〈〈二次函數(shù)〉〉,導(dǎo)入新課
(二).合作學(xué)習(xí),探索新知
為了更貼近生活,我先設(shè)計(jì)了兩個和實(shí)際生活有關(guān)的練習(xí)題。鼓勵學(xué)生積極發(fā)言,充分調(diào)動學(xué)生的主動性。然后出示課本上的兩個問題,在這個環(huán)節(jié)中,我讓學(xué)生在教師的引導(dǎo)下,先獨(dú)立思考,再以小組為單位交流成果,以培養(yǎng)學(xué)生自主探索、合作探究的能力。四個解析式都列出來后。讓學(xué)生通過觀察與思考,這些解析式有什么共同特征,啟發(fā)學(xué)生用自己的語言總結(jié),從而得出二次函數(shù)的概念,并且提高了學(xué)生的語言表達(dá)能力。
學(xué)生在學(xué)習(xí)二次函數(shù)的概念時要求學(xué)生既要知道表示二次函數(shù)的解析式中字母的意義,還要能根據(jù)給出的函數(shù)解析式判斷一個函數(shù)是不是二次函數(shù)
(三)當(dāng)堂訓(xùn)練 鞏固提高
由于學(xué)生層次不一,練習(xí)的設(shè)計(jì)充分考慮到學(xué)生的個體差異,滿足不同層次學(xué)生的學(xué)習(xí)需求,實(shí)現(xiàn)有“差異的”發(fā)展。讓每一個學(xué)生都感受成功的喜悅。我設(shè)計(jì)了3道練習(xí)題,其難易程度逐步提高,第一道題面對所有的學(xué)生,學(xué)生可以根據(jù)二次函數(shù)的概念直接判斷,但需要強(qiáng)調(diào)該化簡的必須化簡后才可以判斷。第二道題讓學(xué)生逆向思維,根據(jù)條件自己寫二次函數(shù),從而加深了對二次函數(shù)概念的理解。最后一道題綜合性較強(qiáng),可以提高他們的綜合素質(zhì)。
(四).小結(jié)歸納 拓展轉(zhuǎn)化
讓學(xué)生用自己的語言談?wù)勛约旱氖斋@,可以將這一節(jié)的知識條理化,進(jìn)一步掌握二次函數(shù)的概念。
(五)布置作業(yè) 學(xué)以致用
作業(yè)分必做題、選做題,體現(xiàn)分層思想,通過作業(yè),內(nèi)化知識,檢驗(yàn)學(xué)生掌握知識的情況,發(fā)現(xiàn)和彌補(bǔ)教與學(xué)中遺漏與不足。同時,選做題具有總結(jié)性,可引導(dǎo)學(xué)生研究二次函數(shù),一次函數(shù),正比例函數(shù)的聯(lián)系.
四.評價分析
本節(jié)課的教學(xué)從學(xué)生已有的認(rèn)知基礎(chǔ)出發(fā),以學(xué)生自主探索、合作交流為主線,讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成與應(yīng)用過程,加深對所學(xué)知識的理解,從而突破重難點(diǎn)。整節(jié)課注重學(xué)生能力的培養(yǎng)和習(xí)慣的養(yǎng)成。由于學(xué)生的層次不一,我全程關(guān)注每一個學(xué)生的學(xué)習(xí)狀態(tài),進(jìn)行分層施教,因勢利導(dǎo),隨機(jī)應(yīng)變,適時調(diào)整教學(xué)環(huán)節(jié),,實(shí)現(xiàn)評價主體和形式的多樣化,把握評價的時機(jī)與尺度,激發(fā)學(xué)生的學(xué)習(xí)興趣,激活課堂氣氛,使課堂教學(xué)達(dá)到最佳狀態(tài)。
五.教學(xué)反思
1.本節(jié)課通過學(xué)生合作交流,自己列出不同問題中的解析式,并通過觀察他們的共同特征,成功得出了二次函數(shù)的概念。
2.本節(jié)課設(shè)計(jì)的以問題為主線,培養(yǎng)學(xué)生有條理思考問題的習(xí)慣和歸納概括能力,并重視培養(yǎng)學(xué)生的語言表達(dá)能力。同時不斷激發(fā)學(xué)生的探索精神,提高了學(xué)生分析和解決問題的能力。使學(xué)生有成功體驗(yàn)。
二次函數(shù)教案3
一、教學(xué)目標(biāo):
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.
2.理解拋物線交x軸的點(diǎn)的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實(shí)根、兩個相等的實(shí)數(shù)和沒有實(shí)根.
3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
二、教學(xué)重點(diǎn)、難點(diǎn):
教學(xué)重點(diǎn):
1.體會方程與函數(shù)之間的聯(lián)系。
2.能夠利用二次函數(shù)的圖象求一元二次方程的`近似根。
教學(xué)難點(diǎn):
1.探索方程與函數(shù)之間關(guān)系的過程。
2.理解二次函數(shù)與x軸交點(diǎn)的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。
三、教學(xué)方法:啟發(fā)引導(dǎo) 合作交流
四:教具、學(xué)具:課件
五、教學(xué)媒體:計(jì)算機(jī)、實(shí)物投影。
六、教學(xué)過程:
檢查預(yù)習(xí) 引出課題
預(yù)習(xí)作業(yè):
1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.
2. 回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.
師生行為:教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評價。
教師重點(diǎn)關(guān)注:學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。
設(shè)計(jì)意圖:這兩道預(yù)習(xí)題目是對舊知識的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計(jì)是讓學(xué)生用學(xué)過的熟悉的知識類比探究本課新知識。
二次函數(shù)教案4
I.定義與定義表達(dá)式一般地,自變量x和因變量y之間存在如下關(guān)系:
y=ax^2+bx+c
(a,b,c為常數(shù),a0,且a決定函數(shù)的開口方向,a0時,開口方向向上,a0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)
則稱y為x的二次函數(shù)。
二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
II.二次函數(shù)的'三種表達(dá)式一般式:y=ax^2+bx+c(a,b,c為常數(shù),a0)
頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-bb^2-4ac)/2a
III.二次函數(shù)的圖像在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,
可以看出,二次函數(shù)的圖像是一條拋物線。
二次函數(shù)教案5
學(xué)習(xí)目標(biāo):
1、能解釋二次函數(shù) 的圖像的位置關(guān)系;
2、體會本節(jié)中圖形的變化與 圖形上的點(diǎn)的坐標(biāo)變化之間的關(guān)系(轉(zhuǎn)化),感受形數(shù) 結(jié)合的數(shù)學(xué)思想等。
學(xué)習(xí)重點(diǎn)與難點(diǎn):
對二次函數(shù) 的圖像的位置關(guān)系解釋和研究問題的數(shù)學(xué)方法的感受是學(xué)習(xí)重點(diǎn);難點(diǎn)是對數(shù)學(xué)問題研究問題方法的感受和領(lǐng)悟。
學(xué)習(xí)過程:
一、知識準(zhǔn)備
本節(jié)課的學(xué)習(xí)的內(nèi)容是課本P12-P14的內(nèi)容,內(nèi)容較長,課本上問題較多,需要你操作、觀察、思考和概括,請你注意:學(xué)習(xí)時要圈、點(diǎn)、勾、畫,隨時記錄甚至批注課本,想想那個人是如何研究出來的。你有何新的發(fā)現(xiàn)呢?
二、學(xué)習(xí)內(nèi)容
1.思考:二次函數(shù) 的圖象是個什么圖形?是拋物線嗎?為什么?(請你仔細(xì)看課本P12-P13,作出合理的解釋)
x -3 -2 -1
0 1 2 3
類似的:二次函數(shù) 的圖象與函數(shù) 的圖象有什么關(guān)系?
它的對稱軸、頂點(diǎn)、最值、增減性如何?
2.想一想:二次函數(shù) 的圖象是拋物線嗎?如果結(jié)合下表和看課本P13-P14你的解釋是什么?
x
-8 -7 -6 -3 -2 -1 0 1 2 3 4 5 6
類似的:二次函數(shù) 的圖象與二次函數(shù) 的圖象有什么關(guān)系 ?它的對稱軸、頂點(diǎn)呢?它的對稱軸、頂點(diǎn)、最值、增減性如何呢
三、知識梳理
1、二次函數(shù) 圖像的形狀,位置的關(guān)系是:
2、它們的性質(zhì)是:
四、達(dá)標(biāo)測試
、睂佄锞y=4x2向上平移3個單位,所得的拋物線的函數(shù)式是 。
將拋物線y=-5x2+1向下平移5個單位,所得的拋物線的函數(shù)式是 。
將函數(shù)y=-3x2+4的圖象向 平移 個單位可得y=-3x2的圖象;
將y=2x2-7的圖象向 平移 個單位得到可由 y=2x2的圖象。
將y=x2-7的.圖象向 平移 個單位 可得到 y=x2+2的圖象。
2.拋物線y=-3(x-1)2可以看作是拋物線y=-3x2沿x 軸 平移了 個單位;
拋物線y=-3(x+1)2可以看作是拋物線y=-3x2沿x軸 平移了 個單位.
拋物線y=-3(x-1)2的頂點(diǎn)是 ;對稱軸 是 ;
拋物線y=-3(x+1)2的頂點(diǎn)是 ;對稱軸是 .
3.拋物線y=-3(x-1)2在對稱軸(x=1)的左側(cè),即當(dāng)x 時, y隨著x的增大而 ; 在對稱軸(x=1)右側(cè),即當(dāng)x 時, y隨著x的增大而 .當(dāng)x= 時,函數(shù)y有最 值,最 值是 ;
二次 函數(shù)y=2x2+5的圖像是 ,開口 ,對稱軸是 ,當(dāng)x= 時,y有最 值,是 。
4.將函數(shù)y=3 (x-4)2的圖象沿x軸對折后得到的函數(shù)解析式是 ;
將函數(shù)y=3(x-4)2的 圖象沿y軸對折后得到的函數(shù)解析式是 ;
5.把拋物線y=a(x-4)2向左平移6個單位后得到拋物線y=- 3(x-h)2的圖象,則a= ,h= .
函數(shù)y=(3x+6)2的圖象是由函數(shù) 的圖象向左平移5個單位得到的,其圖象開口向 ,對稱軸是 ,頂點(diǎn)坐標(biāo)是 ,當(dāng)x 時,y隨x的增大而增大,當(dāng)x= 時,y有最 值是 .
6.已知二次函數(shù)y=ax2+c ,當(dāng)x取x1,x2(x1x2), x1,x2分別是A,B兩點(diǎn)的橫坐標(biāo))時,函數(shù)值相等,
則當(dāng)x取x1+x2時,函數(shù)值為 ( )
A. a+c B. a-c C. c D. c
7.已知二次函數(shù)y=a(x-h)2, 當(dāng)x=2時有最大值,且此函數(shù)的圖象經(jīng)過點(diǎn)(1,-3),求此函數(shù)的解析式,并指出當(dāng)x為何值時,y隨x的增大而增大?
二次函數(shù)教案6
二次函數(shù)的性質(zhì)與圖像
【學(xué)習(xí)目標(biāo)】
1、使學(xué)生掌握研究二次函數(shù)的一般方法——配方法;
2、應(yīng)“描點(diǎn)法”畫出二次函數(shù) ( 的圖像,通過圖像總結(jié)二次函數(shù)的性質(zhì);
3、通過研究二次函數(shù)和圖像的性質(zhì),能進(jìn)一步體會研究一般函數(shù)的方法,能由特殊到一般地研究問題。
【自主學(xué)習(xí)】
二次函數(shù)的性質(zhì)與圖像
1)定義:函數(shù) 叫二次函數(shù),它的定義域是 。特別地,當(dāng) 時,二次函數(shù)變?yōu)?( 。
2)函數(shù) 的圖像和性質(zhì):
。1)函數(shù) 的圖像是一條頂點(diǎn)為原點(diǎn)的拋物線,當(dāng) 時,拋物線開口 ,當(dāng) 時,拋物線開口 。
。2)函數(shù) 為 (填“奇函數(shù)”或“偶函數(shù)”)。
。3)函數(shù) 的圖像的對稱軸為 。
3)二次函數(shù) 的性質(zhì)
。1)函數(shù)的圖像是 ,拋物線的頂點(diǎn)坐標(biāo)是 ,拋物線的對稱軸是直線 。
。2)當(dāng) 時,拋物線開口向上,函數(shù)在 處取得最小值 ;在區(qū)間 上是減函數(shù),在 上是增函數(shù)。
。3)當(dāng) 時,拋物線開口向下,函數(shù)在 處取得最大值 ;在區(qū)間 上是增函數(shù),在 上是減函數(shù)。
跟蹤1、試述二次函數(shù) 的性質(zhì),并作出它的圖像。
跟蹤2、研討二次函數(shù) 的`性質(zhì)和圖像。
跟蹤3、求函數(shù) 的值域和它的圖像的對稱軸,并說出它在那個區(qū)間上是增函數(shù)?在那個區(qū)間上是減函數(shù)?
跟蹤4、課本P60練習(xí)B
1、
【歸納總結(jié)】
研究二次函數(shù)的圖像與性質(zhì)的思路是什么?
函數(shù)二次函數(shù) (a、b、c是常數(shù),a≠0)
圖像a>0 a<0
性質(zhì)
【典例示范】
例1:將函數(shù) 配方,確定其對稱軸和頂點(diǎn)坐標(biāo),求出 它的單調(diào)區(qū)間及最大值或最小值,并畫出它的圖像。
例2:二次函數(shù) 與 的圖像開口大小相同,開口方向也相同。已知函數(shù) 的解析式和 的頂點(diǎn),寫出符合下列條件的函數(shù) 的解析式。
(1)函數(shù) , 的圖像的頂點(diǎn)是(4, );
。2)函數(shù) , 圖像的頂點(diǎn)是 。
二次函數(shù)教案7
教學(xué)目標(biāo)
1、經(jīng)歷用三種方式表示變量之間二次函數(shù)關(guān)系的過程,體會三種方式之間的聯(lián)系與各自不同的特點(diǎn)
2、能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題
3、能夠根據(jù)二次函數(shù)的不同表示方式,從不同的側(cè)面對函數(shù)性質(zhì)進(jìn)行研究
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):用三種方式表示變量之間二次函數(shù)關(guān)系
難點(diǎn):根據(jù)二次函數(shù)的'不同表示方式,從不同的側(cè)面對函數(shù)性質(zhì)進(jìn)行研究
教學(xué)過程設(shè)計(jì)
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題
這節(jié)課,我們來學(xué)習(xí)二次函數(shù)的三種表達(dá)方式。
二、師生共同研究形成概念
1、用函數(shù)表達(dá)式表示
☆做一做書本P56矩形的周長與邊長、面積的關(guān)系
鼓勵學(xué)生間的互相交流,一定要讓學(xué)生理解周長與邊長、面積的關(guān)系。
比較全面、完整、簡單地表示出變量之間的關(guān)系
2、用表格表示
☆做一做書本P56填表
由于運(yùn)算量比較大,學(xué)生的運(yùn)算能力又一般,因此,建議把這個表格的一部分?jǐn)?shù)據(jù)先給出來,讓學(xué)生完成未完成的部分空格。
表格表示可以清楚、直接地表示出變量之間的數(shù)值對應(yīng)關(guān)系
3、用圖象表示
☆議一議書本P56議一議
關(guān)于自變量的問題,學(xué)生往往比較難理解,講解時,可適當(dāng)多花時間講解。
可以直觀地表示出函數(shù)的變化過程和變化趨勢
☆做一做書本P57
4、三種方法對比
☆議一議書本P58議一議
函數(shù)的表格表示可以清楚、直接地表示出變量之間的數(shù)值對應(yīng)關(guān)系;函數(shù)的圖象表示可以直觀地表示出函數(shù)的變化過程和變化趨勢;函數(shù)的表達(dá)式可以比較全面、完整、簡單地表示出變量之間的關(guān)系。這三種表示方式積壓自有各自的優(yōu)點(diǎn),它們服務(wù)于不同的需要。
在對三種表示方式進(jìn)行比較時,學(xué)生的看法可能多種多樣。只要他們的想法有一定的道理,教師就應(yīng)予以肯定和鼓勵。
二次函數(shù)教案8
【知識與技能】
1.會用描點(diǎn)法畫二次函數(shù)y=ax2+bx+c的圖象.
2.會用配方法求拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)、開口方向、對稱軸、y隨x的增減性.
3.能通過配方求出二次函數(shù)y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函數(shù)的性質(zhì)求實(shí)際問題中的最大值或最小值.
【過程與方法】
1.經(jīng)歷探索二次函數(shù)y=ax2+bx+c(a≠0)的圖象的作法和性質(zhì)的過程,體會建立二次函數(shù)y=ax2+bx+c(a≠0)對稱軸和頂點(diǎn)坐標(biāo)公式的必要性.
2.在學(xué)習(xí)y=ax2+bx+c(a≠0)的性質(zhì)的過程中,滲透轉(zhuǎn)化(化歸)的思想.
【情感態(tài)度】
進(jìn)一步體會由特殊到一般的化歸思想,形成積極參與數(shù)學(xué)活動的意識.
【教學(xué)重點(diǎn)】
、儆门浞椒ㄇ髖=ax2+bx+c的頂點(diǎn)坐標(biāo);②會用描點(diǎn)法畫y=ax2+bx+c的圖象并能說出圖象的`性質(zhì).
【教學(xué)難點(diǎn)】
能利用二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸和頂點(diǎn)坐標(biāo)公式,解決一些問題,能通過對稱性畫出二次函數(shù)y=ax2+bx+c(a≠0)的圖象.
一、情境導(dǎo)入,初步認(rèn)識
請同學(xué)們完成下列問題.
1.把二次函數(shù)y=-2x2+6x-1化成y=a(x-h)2+k的形式.
2.寫出二次函數(shù)y=-2x2+6x-1的開口方向,對稱軸及頂點(diǎn)坐標(biāo).
3.畫y=-2x2+6x-1的圖象.
4.拋物線y=-2x2如何平移得到y(tǒng)=-2x2+6x-1的圖象.
5.二次函數(shù)y=-2x2+6x-1的y隨x的增減性如何?
【教學(xué)說明】上述問題教師應(yīng)放手引導(dǎo)學(xué)生逐一完成,從而領(lǐng)會y=ax2+bx+c與y=a(x-h)2+k的轉(zhuǎn)化過程.
二、思考探究,獲取新知
探究1 如何畫y=ax2+bx+c圖象,你可以歸納為哪幾步?
學(xué)生回答、教師點(diǎn)評:
一般分為三步:
1.先用配方法求出y=ax2+bx+c的對稱軸和頂點(diǎn)坐標(biāo).
2.列表,描點(diǎn),連線畫出對稱軸右邊的部分圖象.
3.利用對稱點(diǎn),畫出對稱軸左邊的部分圖象.
探究2 二次函數(shù)y=ax2+bx+c圖象的性質(zhì)有哪些?你能試著歸納嗎?
二次函數(shù)教案9
二次函數(shù)的圖象與性質(zhì)
1.畫出函數(shù)=2x2-3x的圖象,說明這個函數(shù)具有哪些性質(zhì)。
2. 通過配方,寫出下列拋物線的`開口方向、對稱軸和頂點(diǎn)坐標(biāo)。
(1)=3x2+2x;
(2)=-x2-2x
( 3)=-2x2+8x-8 (4)=12x2-4x+3
板書設(shè)計(jì)
1、畫函數(shù)=ax2+bx+c(a≠0)的圖象。
(列表時,應(yīng)以對稱軸為中心,對稱地選取自變量的值,求出相應(yīng)的函數(shù)值。)
2、二次函數(shù)=ax2+bx+c(a≠0),
當(dāng)a>0時,開口向上,當(dāng)a<0時,開口向下。
對稱軸是x=-b2a,頂點(diǎn)坐標(biāo)是(-b2a,4ac-b24a)
。ㄗ钪蹬c拋物線的開口方向及頂點(diǎn)的縱坐標(biāo)有關(guān)。)
課后反思
在本節(jié)教學(xué)中,教學(xué)仍從回顧上節(jié)人手,使學(xué)生掌握二次函數(shù) 是由 如何平移得來,并熟練掌握二次函數(shù) 圖象的開口方向、對稱軸和頂點(diǎn)坐標(biāo)及有關(guān)性質(zhì)。在此基礎(chǔ)上,引導(dǎo)學(xué)生思考二次函數(shù)=ax2+bx+c(a≠0)圖像的開口方向、對稱軸和頂點(diǎn)坐標(biāo)?這樣激起學(xué)生的求知欲望,能進(jìn)行有目的探究活動,學(xué)生變被動為主動,學(xué)習(xí)方式發(fā)生了改變。這節(jié)課學(xué)生既動手又動腦,體驗(yàn)到學(xué)習(xí)知識的樂趣。
二次函數(shù)教案10
〖大綱要求〗
1. 理解二次函數(shù)的概念;
2. 會把二次函數(shù)的一般式化為頂點(diǎn)式,確定圖象的頂點(diǎn)坐標(biāo)、對稱軸和開口方向,會用描點(diǎn)法畫二次函數(shù)的圖象;
3. 會平移二次函數(shù)y=ax2(a≠0)的圖象得到二次函數(shù)y=a(ax+m)2+k的圖象,了解特殊與一般相互聯(lián)系和轉(zhuǎn)化的思想;
4. 會用待定系數(shù)法求二次函數(shù)的解析式;
5. 利用二次函數(shù)的圖象,了解二次函數(shù)的增減性,會求二次函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo)和函數(shù)的最大值、最小值,了解二次函數(shù)與一元二次方程和不等式之間的聯(lián)系,數(shù)學(xué)教案-二次函數(shù)。
內(nèi)容
。1)二次函數(shù)及其圖象
如果y=ax2+bx+c(a,b,c是常數(shù),a≠0),那么,y叫做x的二次函數(shù)。
二次函數(shù)的圖象是拋物線,可用描點(diǎn)法畫出二次函數(shù)的圖象。
。2)拋物線的頂點(diǎn)、對稱軸和開口方向
拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)是 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
20.某幢建筑物,從10米高的窗口A用水管和向外噴水,噴的水流呈拋物線(拋物線所在平面與墻面垂直,(如圖)如果拋物線的最高點(diǎn)M離墻1米,離地面米,則水流下落點(diǎn)B離墻距離OB是( )
(A)2米 (B)3米 (C)4米 (D)5米
三.解答下列各題(21題6分,22----25每題4分,26-----28每題6分,共40分)
21.已知:直線y=x+k過點(diǎn)A(4,-3)。(1)求k的值;(2)判斷點(diǎn)B(-2,-6)是否在這條直線上;(3)指出這條直線不過哪個象限。
22.已知拋物線經(jīng)過A(0,3),B(4,6)兩點(diǎn),對稱軸為x=,
(1) 求這條拋物線的解析式;
。2) 試證明這條拋物線與X軸的兩個交點(diǎn)中,必有一點(diǎn)C,使得對于x軸上任意一點(diǎn)D都有AC+BC≤AD+BD。
23.已知:金屬棒的長1是溫度t的一次函數(shù),現(xiàn)有一根金屬棒,在O℃時長度為200cm,溫度提高1℃,它就伸長0.002cm。
。1) 求這根金屬棒長度l與溫度t的函數(shù)關(guān)系式;
。2) 當(dāng)溫度為100℃時,求這根金屬棒的長度;
。3) 當(dāng)這根金屬棒加熱后長度伸長到201.6cm時,求這時金屬棒的溫度。
24.已知x1,x2,是關(guān)于x的方程x2-3x+m=0的兩個不同的實(shí)數(shù)根,設(shè)s=x12+x22
(1) 求S關(guān)于m的解析式;并求m的取值范圍;
(2) 當(dāng)函數(shù)值s=7時,求x13+8x2的值;
25.已知拋物線y=x2-(a+2)x+9頂點(diǎn)在坐標(biāo)軸上,求a的值。
。玻、如圖,在直角梯形ABCD中,∠A=∠D=Rt∠,截。粒牛剑拢疲剑模牵剑阎粒拢剑,CD=3,AD=4,求:
(1) 四邊形CGEF的面積S關(guān)于x的函數(shù)表達(dá)式和X的取值范圍;
。ǎ玻 當(dāng)x為何值時,S的數(shù)值是x的4倍。
27、國家對某種產(chǎn)品的稅收標(biāo)準(zhǔn)原定每銷售100元需繳稅8元(即稅率為8%),臺洲經(jīng)濟(jì)開發(fā)區(qū)某工廠計(jì)劃銷售這種產(chǎn)品m噸,每噸2000元。國家為了減輕工人負(fù)擔(dān),將稅收調(diào)整為每100元繳稅(8-x)元(即稅率為(8-x)%),這樣工廠擴(kuò)大了生產(chǎn),實(shí)際銷售比原計(jì)劃增加2x%。
。ǎ保 寫出調(diào)整后稅款y(元)與x的函數(shù)關(guān)系式,指出x的取值范圍;
。ǎ玻 要使調(diào)整后稅款等于原計(jì)劃稅款(銷售m噸,稅率為8%)的78%,求x的值.
。玻浮⒁阎獟佄锞y=x2+(2-m)x-2m(m≠2)與y軸的交點(diǎn)為A,與x軸的交點(diǎn)為B,C(B點(diǎn)在C點(diǎn)左邊)
。ǎ保 寫出A,B,C三點(diǎn)的坐標(biāo);
(2) 設(shè)m=a2-2a+4試問是否存在實(shí)數(shù)a,使△ABC為Rt△?若存在,求出a的值,若不存在,請說明理由;
(3) 設(shè)m=a2-2a+4,當(dāng)∠BAC最大時,求實(shí)數(shù)a的值。
習(xí)題2:
一.填空(20分)
1.二次函數(shù)=2(x - )2 +1圖象的對稱軸是 。
2.函數(shù)y= 的自變量的.取值范圍是 。
3.若一次函數(shù)y=(m-3)x+m+1的圖象過一、二、四象限,則的取值范圍是 。
4.已知關(guān)于的二次函數(shù)圖象頂點(diǎn)(1,-1),且圖象過點(diǎn)(0,-3),則這個二次函數(shù)解析式為 。
5.若y與x2成反比例,位于第四象限的一點(diǎn)P(a,b)在這個函數(shù)圖象上,且a,b是方程x2-x -12=0的兩根,則這個函數(shù)的關(guān)系式 。
6.已知點(diǎn)P(1,a)在反比例函數(shù)y= (k≠0)的圖象上,其中a=m2+2m+3(m為實(shí)數(shù)),則這個函數(shù)圖象在第 象限。
7. x,y滿足等式x= ,把y寫成x的函數(shù) ,其中自變量x的取值范圍是 。
8.二次函數(shù)y=ax2+bx+c+(a 0)的圖象如圖,則點(diǎn)P(2a-3,b+2)
在坐標(biāo)系中位于第 象限
9.二次函數(shù)y=(x-1)2+(x-3)2,當(dāng)x= 時,達(dá)到最小值 。
10.拋物線y=x2-(2m-1)x- 6m與x軸交于(x1,0)和(x2,0)兩點(diǎn),已知x1x2=x1+x2+49,要使拋物線經(jīng)過原點(diǎn),應(yīng)將它向右平移 個單位。
二.選擇題(30分)
11.拋物線y=x2+6x+8與y軸交點(diǎn)坐標(biāo)( )
。ˋ)(0,8) (B)(0,-8) (C)(0,6) (D)(-2,0)(-4,0)
12.拋物線y=- (x+1)2+3的頂點(diǎn)坐標(biāo)( )
。ˋ)(1,3) (B)(1,-3) (C)(-1,-3) (D)(-1,3)
13.如圖,如果函數(shù)y=kx+b的圖象在第一、二、三象限,那么函數(shù)y=kx2+bx-1的圖象大致是( )
14.函數(shù)y= 的自變量x的取值范圍是( )
(A)x 2 (B)x<2 x="">- 2且x 1 (D)x 2且x –1
15.把拋物線y=3x2先向上平移2個單位,再向右平移3個單位,所得拋物線的解析式是( )
。ˋ)=3(x+3)2 -2 (B)=3(x+2)2+2 (C)=3(x-3)2 -2 (D)=3(x-3)2+2
16.已知拋物線=x2+2mx+m -7與x軸的兩個交點(diǎn)在點(diǎn)(1,0)兩旁,則關(guān)于x的方程 x2+(m+1)x+m2+5=0的根的情況是( )
。ˋ)有兩個正根 (B)有兩個負(fù)數(shù)根 (C)有一正根和一個負(fù)根 (D)無實(shí)根
17.函數(shù)y=- x的圖象與圖象y=x+1的交點(diǎn)在( )
。ˋ) 第一象限 (B)第二象限 (C)第三象限 (D)第四象限
18.如果以y軸為對稱軸的拋物線y=ax2+bx+c的圖象,如圖,
則代數(shù)式b+c-a與0的關(guān)系( )
(A)b+c-a=0 (B)b+c-a>0 (C)b+c-a<0 (D)不能確定
19.已知:二直線y=- x +6和y=x - 2,它們與y軸所圍成的三角形的面積為( )
(A)6 (B)10 (C)20 (D)12
20.某學(xué)生從家里去學(xué)校,開始時勻速跑步前進(jìn),跑累了后,再勻速步行余下的路程,初中數(shù)學(xué)教案《數(shù)學(xué)教案-二次函數(shù)》。下圖所示圖中,橫軸表示該生從家里出發(fā)的時間t,縱軸表示離學(xué)校的路程s,則路程s與時間t之間的函數(shù)關(guān)系的圖象大致是( )
三.解答題(21~23每題5分,24~28每題7分,共50分)
21.已知拋物線y=ax2+bx+c(a 0)與x軸的兩交點(diǎn)的橫坐標(biāo)分別是-1和3,與y軸交點(diǎn)的縱坐標(biāo)是- ;
。1)確定拋物線的解析式;
。2)用配方法確定拋物線的開口方向,對稱軸和頂點(diǎn)坐標(biāo)。
22、如圖拋物線與直線 都經(jīng)過坐標(biāo)軸的正半軸上A,B兩點(diǎn),該拋物線的對稱軸x=—1,與x軸交于點(diǎn)C,且∠ABC=90°求:
(1)直線AB的解析式;
(2)拋物線的解析式。
23、某商場銷售一批名脾襯衫,平均每天可售出20件,每件盈利40元,為了擴(kuò)大銷售,增加盈利,盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn)每件襯衫降價1元, 商場平均每天可多售出2件:
(1)若商場平均每天要盈利1200元,每件襯衫要降價多少元,
(2)每件襯衫降價多少元時,商場平均每天盈利最多?
24、已知:二次函數(shù) 和 的圖象都經(jīng)過x軸上兩個不同的點(diǎn)M、N,求a、b的值。
25、如圖,已知⊿ABC是邊長為4的正三角形,AB在x軸上,點(diǎn)C在第一象限,AC與y軸交于點(diǎn)D,點(diǎn)A的坐標(biāo)為{—1,0),求
(1)B,C,D三點(diǎn)的坐標(biāo);
(2)拋物線 經(jīng)過B,C,D三點(diǎn),求它的解析式;
(3)過點(diǎn)D作DE∥AB交過B,C,D三點(diǎn)的拋物線于E,求DE的長。
26 某市電力公司為了鼓勵居民用電,采用分段計(jì)費(fèi)的方法計(jì)算電費(fèi):每月用電不超100度
時,按每度0.57元計(jì)費(fèi):每月用電超過100度時.其中的100度仍按原標(biāo)準(zhǔn)收費(fèi),超過部分按每度0.50元計(jì)費(fèi)。
(1)設(shè)月用電x度時,應(yīng)交電費(fèi)y元,當(dāng)x≤100和x>100時,分別寫出y關(guān)于x的函數(shù)
關(guān)系式;
(1)求證;不論m取何值,拋物線與x軸必有兩個交點(diǎn),并且有一個交點(diǎn)是A(2,0);
(2)設(shè)拋物線與x軸的另一個交點(diǎn)為B,AB的長為d,求d與m之間的函數(shù)關(guān)系式;
(3)設(shè)d=10,P(a,b)為拋物線上一點(diǎn):
、佼(dāng)⊿ABP是直角三角形時,求b的值;
、诋(dāng)⊿ABP是銳角三角形,鈍角三角形時,分別寫出b的取值范圍(第2題不要求寫出過程)
28、已知二次函數(shù)的圖象 與x軸的交點(diǎn)為A,B(點(diǎn)B在點(diǎn)A的右邊),與y軸的交點(diǎn)為C;
(1)若⊿ABC為Rt⊿,求m的值;
(1)在⊿ABC中,若AC=BC,求sin∠ACB的值;
(3)設(shè)⊿ABC的面積為S,求當(dāng)m為何值時,s有最小值.并求這個最小值。
二次函數(shù)教案11
一.學(xué)習(xí)目標(biāo)
1.經(jīng)歷對實(shí)際問題情境分析確定二次函數(shù)表達(dá)式的過程,體會二次函數(shù)意義。
2.了解二次函數(shù)關(guān)系式,會確定二次函數(shù)關(guān)系式中各項(xiàng)的系數(shù)。
二.知識導(dǎo)學(xué)
(一)情景導(dǎo)學(xué)
1.一粒石子投入水中,激起的波紋不斷向外擴(kuò)展,擴(kuò)大的圓的面積S與半徑r之間的函數(shù)關(guān)系式是 。
2.用16米長的籬笆圍成長方形的生物園飼養(yǎng)小兔,怎樣圍可使小兔的活動范圍較大?
設(shè)長方形的長為x 米,則寬為 米,如果將面積記為y平方米,那么變量y與x之間的函數(shù)關(guān)系式為 .
3.要給邊長為x米的正方形房間鋪設(shè)地板,已知某種地板的價格為每平方米240元,踢腳線的價格為每米30元,如果其他費(fèi)用為1000元,門寬0.8米,那么總費(fèi)用y為多少元?
在這個問題中,地板的費(fèi)用與 有關(guān),為 元,踢腳線的費(fèi)用與 有關(guān),為 元;其他費(fèi)用固定不變?yōu)?元,所以總費(fèi)用y(元)與x(m)之間的函數(shù)關(guān)系式是 。
。ǘw納提高。
上述函數(shù)函數(shù)關(guān)系有哪些共同之處?它們與一次函數(shù)、反比例函數(shù)的關(guān)系式有什么不同?
一般地,我們稱 表示的函數(shù)為二次函數(shù)。其中 是自變量, 函數(shù)。
一般地,二次函數(shù) 中自變量x的取值范圍是 ,你能說出上述三個問題中自變量的取值范圍嗎?
。ㄈ┑淅治
例1、判斷:下列函數(shù)是否為二次函數(shù),如果是,指出其中常數(shù)a.b.c的值.
(1) y=1— (2)y=x(x-5) (3)y= - x+1 (4) y=3x(2-x)+ 3x2
(5)y= (6) y= (7)y= x4+2x2-1 (8)y=ax2+bx+c
例2.當(dāng)k為何值時,函數(shù) 為二次函數(shù)?
例3.寫出下列各函數(shù)關(guān)系,并判斷它們是什么類型的函數(shù).
、耪襟w的表面積S(cm2)與棱長a(cm)之間的函數(shù)關(guān)系;
、茍A的面積y(cm2)與它的周長x(cm)之間的函數(shù)關(guān)系;
、悄撤N儲蓄的年利率是1.98%,存入10000元本金,若不計(jì)利息,求本息和y(元)與所存年數(shù)x之間的函數(shù)關(guān)系;
、攘庑蔚膬蓷l對角線的和為26cm,求菱形的'面積S(cm2)與一對角線長x(cm)之間的函數(shù)關(guān)系.
三.鞏固拓展
1.已知函數(shù) 是二次函數(shù),求m的值.
2. 已知二次函數(shù) ,當(dāng)x=3時,y= -5,當(dāng)x= -5時,求y的值.
3.一個長方形的長是寬的1.6倍,寫出這個長方形的面積S與寬x之間函數(shù)關(guān)系式。
4.一個圓柱的高與底面直徑相等,試寫出它的表面積S與底面半徑r之間的函數(shù)關(guān)系式
5.用一根長為40 cm的鐵絲圍成一個半徑為r的扇形,求扇形的面積y與它的半徑x之間的函數(shù)關(guān)系式.這個函數(shù)是二次函數(shù)嗎?請寫出半徑r的取值范圍.
6. 一條隧道的截面如圖所示,它的上部是一個半圓,下部是一個矩形,矩形的一邊長2.5 m.
⑴求隧道截面的面積S(m2)關(guān)于上部半圓半徑r(m)的函數(shù)關(guān)系式;
⑵求當(dāng)上部半圓半徑為2 m時的截面面積.(π取3.14,結(jié)果精確到0.1 m2)
課堂練習(xí):
1.判斷下列函數(shù)是否是二次函數(shù),若是,請指出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng)。
(1)y=2-3x2; (2)y=x2+2x3; (3)y= ; (4)y= .
2.寫出多項(xiàng)式的對角線的條數(shù)d與邊數(shù)n之間的函數(shù)關(guān)系式。
3.某產(chǎn)品年產(chǎn)量為30臺,計(jì)劃今后每年比上一年的產(chǎn)量增長x%,試寫出兩年后的產(chǎn)量y(臺)與x的函數(shù)關(guān)系式。
4.圓柱的高h(yuǎn)(cm)是常量,寫出圓柱的體積v(cm3)與底面周長C(cm)之間的函數(shù)關(guān)系式。
課外作業(yè):
A級:
1.下列函數(shù):(1)y=3x2+ +1;(2)y= x2+5;(3)y=(x-3)2-x2;(4)y=1+x- ,屬于二次函數(shù)的
是 (填序號).
2.函數(shù)y=(a-b)x2+ax+b是二次函數(shù)的條件為 .
3.下列函數(shù)關(guān)系中,滿足二次函數(shù)關(guān)系的是( )
A.圓的周長與圓的半徑之間的關(guān)系; B.在彈性限度內(nèi),彈簧的長度與所掛物體質(zhì)量的關(guān)系;
C.圓柱的高一定時,圓柱的體積與底面半徑的關(guān)系;
D.距離一定時,汽車行駛的速度與時間之間的關(guān)系.
4.某超市1月份的營業(yè)額為200萬元,2、3月份營業(yè)額的月平均增長率為x,求第一季度營業(yè)額y(萬元)與x的函數(shù)關(guān)系式.
B級:
5、一塊直角三角尺的形狀與尺寸如圖,若圓孔的半徑為 ,三角尺的厚度為16,求這塊三角尺的體積V與n的函數(shù)關(guān)系式.
6.某地區(qū)原有20個養(yǎng)殖場,平均每個養(yǎng)殖場養(yǎng)奶牛20xx頭。后來由于市場原因,決定減少養(yǎng)殖場的數(shù)量,當(dāng)養(yǎng)殖場每減少1個時,平均每個養(yǎng)殖場的奶牛數(shù)將增加300頭。如果養(yǎng)殖場減少x個,求該地區(qū)奶?倲(shù)y(頭)與x(個)之間的函數(shù)關(guān)系式。
C級:
7.圓的半徑為2cm,假設(shè)半徑增加xcm 時,圓的面積增加到y(tǒng)(cm2).
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)圓的半徑分別增加1cm、 時,圓的面積分別增加多少?
。3)當(dāng)圓的面積為5πcm2時,其半徑增加了多少?
8.已知y+2x2=kx(x-3)(k≠2).
(1)證明y是x的二次函數(shù);
(2)當(dāng)k=-2時,寫出y與x的函數(shù)關(guān)系式。
二次函數(shù)教案12
【知識與技能】
1.會用描點(diǎn)法畫二次函數(shù)=ax2+bx+c的圖象.
2.會用配方法求拋物線=ax2+bx+c的頂點(diǎn)坐標(biāo)、開口方向、對稱軸、隨x的增減性.
3.能通過配方求出二次函數(shù)=ax2+bx+c(a≠0)的最大或最小值;能利用二次函數(shù)的性質(zhì)求實(shí)際問題中的最大值或最小值.
【過程與方法】
1.經(jīng)歷探索二次函數(shù)=ax2+bx+c(a≠0)的圖象的作法和性質(zhì)的`過程,體會建立二次函數(shù)=ax2+bx+c(a≠0)對稱軸和頂點(diǎn)坐標(biāo)公式的必要性.
2.在學(xué)習(xí)=ax2+bx+c(a≠0)的性質(zhì)的過程中,滲透轉(zhuǎn)化(化歸)的思想.
【情感態(tài)度】
進(jìn)一步體會由特殊到一般的化歸思想,形成積極參與數(shù)學(xué)活動的意識.
【教學(xué)重點(diǎn)】
、儆门浞椒ㄇ=ax2+bx+c的頂點(diǎn)坐標(biāo);②會用描點(diǎn)法畫=ax2+bx+c的圖象并能說出圖象的性質(zhì).
【教學(xué)難點(diǎn)】
能利用二次函數(shù)=ax2+bx+c(a≠0)的對稱軸和頂點(diǎn)坐標(biāo)公式,解決一些問題,能通過對稱性畫出二次函數(shù)=ax2+bx+c(a≠0)的圖象.
一、情境導(dǎo)入,初步認(rèn)識
請同學(xué)們完成下列問題.
1.把二次函數(shù)=-2x2+6x-1化成=a(x-h)2+的形式.
2.寫出二次函數(shù)=-2x2+6x-1的開口方向,對稱軸及頂點(diǎn)坐標(biāo).
3.畫=-2x2+6x-1的圖象.
4.拋物線=-2x2如何平移得到=-2x2+6x-1的圖象.
5.二次函數(shù)=-2x2+6x-1的隨x的增減性如何?
【教學(xué)說明】上述問題教師應(yīng)放手引導(dǎo)學(xué)生逐一完成,從而領(lǐng)會=ax2+bx+c與=a(x-h)2+的轉(zhuǎn)化過程.
二、思考探究,獲取新知
探究1 如何畫=ax2+bx+c圖象,你可以歸納為哪幾步?
學(xué)生回答、教師點(diǎn)評:
一般分為三步:
1.先用配方法求出=ax2+bx+c的對稱軸和頂點(diǎn)坐標(biāo).
2.列表,描點(diǎn),連線畫出對稱軸右邊的部分圖象.
3.利用對稱點(diǎn),畫出對稱軸左邊的部分圖象.
探究2 二次函數(shù)=ax2+bx+c圖象的性質(zhì)有哪些?你能試著歸納嗎?
二次函數(shù)教案13
二次函數(shù)的教學(xué)設(shè)計(jì)
教學(xué)內(nèi)容:人教版九年義務(wù)教育初中第三冊第108頁
教學(xué)目標(biāo):
1。 1。 理解二次函數(shù)的意義;會用描點(diǎn)法畫出函數(shù)y=ax2的圖象,知道拋物線的有關(guān)概念;
2。 2。 通過變式教學(xué),培養(yǎng)學(xué)生思維的敏捷性、廣闊性、深刻性;
3。 3。 通過二次函數(shù)的教學(xué)讓學(xué)生進(jìn)一步體會研究函數(shù)的一般方法;加深對于數(shù)形結(jié)合思想認(rèn)識。
教學(xué)重點(diǎn):二次函數(shù)的意義;會畫二次函數(shù)圖象。
教學(xué)難點(diǎn):描點(diǎn)法畫二次函數(shù)y=ax2的圖象,數(shù)與形相互聯(lián)系。
教學(xué)過程設(shè)計(jì):
一 創(chuàng)設(shè)情景、建模引入
我們已學(xué)習(xí)了正比例函數(shù)及一次函數(shù),現(xiàn)在來看看下面幾個例子:
1。寫出圓的半徑是R(CM),它的面積S(CM2)與R的關(guān)系式
答:S=πR2。 ①
2。寫出用總長為60M的籬笆圍成矩形場地,矩形面積S(M2)與矩形一邊長L(M)之間的關(guān)系
答:S=L(30-L)=30L-L2 ②
分析:①②兩個關(guān)系式中S與R、L之間是否存在函數(shù)關(guān)系?
S是否是R、L的一次函數(shù)?
由于①②兩個關(guān)系式中S不是R、L的一次函數(shù),那么S是R、L的什么函數(shù)呢?這樣的函數(shù)大家能不能猜想一下它叫什么函數(shù)呢?
答:二次函數(shù)。
這一節(jié)課我們將研究二次函數(shù)的有關(guān)知識。(板書課題)
二 歸納抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常數(shù),a≠0) ,
那么,y叫做x的二次函數(shù)。
注意:(1)必須a≠0,否則就不是二次函數(shù)了。而b,c兩數(shù)可以是零。(2) 由于二次函數(shù)的解析式是整式的形式,所以x的取值范圍是任意實(shí)數(shù)。
練習(xí):1。舉例子:請同學(xué)舉一些二次函數(shù)的例子,全班同學(xué)判斷是否正確。
2。出難題:請同學(xué)給大家出示一個函數(shù),請同學(xué)判斷是否是二次函數(shù)。
(若學(xué)生考慮不全,教師給予補(bǔ)充。如:;;; 的形式。)
。ㄍㄟ^學(xué)生觀察、歸納定義加深對概念的理解,既培養(yǎng)了學(xué)生的實(shí)踐能力,有培養(yǎng)了學(xué)生的探究精神。并通過開放性的練習(xí)培養(yǎng)學(xué)生思維的發(fā)散性、開放性。題目用了一些人性化的詞語,也增添了課堂的趣味性。)
由前面一次函數(shù)的學(xué)習(xí),我們已經(jīng)知道研究函數(shù)一般應(yīng)按照定義、圖象、性質(zhì)、求解析式幾個方面進(jìn)行研究。二次函數(shù)我們也會按照定義、圖象、性質(zhì)、求解析式幾個方面進(jìn)行研究。
。ㄔ谶@里指出學(xué)習(xí)函數(shù)的一般方法,旨在及時進(jìn)行學(xué)法指導(dǎo);并將此方法形成技能,以指導(dǎo)今后的學(xué)習(xí);進(jìn)一步培養(yǎng)終身學(xué)習(xí)的能力。)
三 嘗試模仿、鞏固提高
讓我們先從最簡單的二次函數(shù)y=ax2入手展開研究
1。 1。 嘗試:大家知道一次函數(shù)的圖象是一條直線,那么二次函數(shù)的圖象是什么呢?
請同學(xué)們畫出函數(shù)y=x2的圖象。
。▽W(xué)生分別畫圖,教師巡視了解情況。)
2。 2。 模仿鞏固:教師將了解到的各種不同圖象用實(shí)物投影向大家展示,到底哪一個對呢?下面師生共同畫出函數(shù)y=x2的圖象。
解:一、列表:
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
Y=x2 | 9 | 4 | 1 | 0 | 1 | 4 | 9 |
二、描點(diǎn)、連線: 按照表格,描出各點(diǎn)。然后用光滑的曲線,按照x(點(diǎn)的橫坐標(biāo))由小到大的`順序把各點(diǎn)連結(jié)起來。
對照教師畫的圖象一一分析學(xué)生所畫圖象的正誤及原因,從而得到畫二次函數(shù)圖象的幾點(diǎn)注意。
練習(xí):畫出函數(shù);的圖象(請兩個同學(xué)板演)
X | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
Y=0。5X2 | 4。5 | 2 | 0。5 | 0 | 0。5 | 02 | 4。5 |
Y=-X2 | -9 | -4 | -1 | 0 | -1 | -4 | -9 |
畫好之后教師根據(jù)情況講評,并引導(dǎo)學(xué)生觀察圖象形狀得出:二次函數(shù) y=ax2的圖象是一條拋物線。
。ㄟ@里,教師在學(xué)生自己探索嘗試的基礎(chǔ)上,示范畫圖象的方法和過程,希望學(xué)生學(xué)會畫圖象的方法;并及時安排練習(xí)鞏固剛剛學(xué)到的新知識,通過觀察,感悟拋物線名稱的由來。)
三 運(yùn)用新知、變式探究
畫出函數(shù) y=5x2圖象
學(xué)生在畫圖象的過程當(dāng)中遇到函數(shù)值較大的困難,不知如何是好。
x | -0。5 | -0。4 | -0。3 | -0。2 | -0。1 | 0 | 0。1 | 0。2 | 0。3 | 0。4 | 0。5 |
Y=5x2 | 1。25 | 0。8 | 0。45 | 0。2 | 0。05 | 0 | 0。05 | 0。2 | 0。45 | 0。8 | 1。25 |
教師出示已畫好的圖象讓學(xué)生觀察
注意:1。 畫圖象應(yīng)描7個左右的點(diǎn),描的點(diǎn)越多圖象越準(zhǔn)確。
2。 自變量X的取值應(yīng)注意關(guān)于Y軸對稱。
3。 對于不同的二次函數(shù)自變量X的取值應(yīng)更加靈活,例如可以取分?jǐn)?shù)。
四。 四。 歸納小結(jié)、延續(xù)探究
教師引導(dǎo)學(xué)生觀察表格及圖象,歸納y=ax2的性質(zhì),學(xué)生們暢所欲言,各抒己見;互相改進(jìn),互相完善。最終得到如下性質(zhì):
一般的,二次函數(shù)y=ax2的圖象是一條拋物線,對稱軸是Y軸,頂點(diǎn)是坐標(biāo)原點(diǎn);當(dāng)a>0時,圖象的開口向上,最低點(diǎn)為(0,0);當(dāng)a<0時,圖象的開口向下,最高點(diǎn)為(0,0)。
五 回顧反思、總結(jié)收獲
在這一環(huán)節(jié)中,教師請同學(xué)們回顧一節(jié)課的學(xué)習(xí)暢談自己的收獲或多、或少、或幾點(diǎn)、或全面,總之是人人有所得,個個有提高。這也正是新課標(biāo)中所倡導(dǎo)的新的理念——不同的人在數(shù)學(xué)上得到不同的發(fā)展。
。ㄔ谡麄一節(jié)課上,基本上是學(xué)生講為主,教師講為輔。一些較為困難的問題,我也鼓勵學(xué)生大膽思考,積極嘗試,不怕困難,一個人完不成,講不透,第二個人、第三個人補(bǔ)充,直到完成整個例題。這樣上課氣氛非常活躍,學(xué)生之間常會因?yàn)槟硞觀點(diǎn)的不同而爭論,這就給教師提出了更高的要求,一方面要控制好整節(jié)課的節(jié)奏,另一方面又要察言觀色,適時地對某些觀點(diǎn)作出判斷,或與學(xué)生一同討論。)
二次函數(shù)教案14
教學(xué)目標(biāo)
(一)教學(xué)知識點(diǎn)
1.能夠利用二次函數(shù)的圖象求一元二次方程的近似根.
2.進(jìn)一步發(fā)展估算能力.
(二)能力訓(xùn)練要求
1.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗(yàn).
2.利用圖象法求一元二次方程的近似根,重要的是讓學(xué)生懂得這種求解方程的思路,體驗(yàn)數(shù)形結(jié)合思想.
(三)情感與價值觀要求
通過利用二次函數(shù)的圖象估計(jì)一元二次方程的根,進(jìn)一步掌握二次函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)和一元二次方程的根的關(guān)系,提高估算能力.
教學(xué)重點(diǎn)
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.
2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根.
教學(xué)難點(diǎn)
利用二次函數(shù)的圖象求一元二次方程的近似根.
教學(xué)方法
學(xué)生合作交流學(xué)習(xí)法.
教具準(zhǔn)備
投影片三張
第一張:(記作2.8.2A)
第二張:(記作2.8.2B)
第三張:(記作2.8.2C)
教學(xué)過程
、.創(chuàng)設(shè)問題情境,引入新課
[師]上節(jié)課我們學(xué)習(xí)了二次函數(shù)y=ax2+bx+c(a≠0)的`圖象與x軸的交點(diǎn)坐標(biāo)和一元二次方程ax2+bx+c=0(a≠0)的根的關(guān)系,懂得了二次函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo),就是y=0時的一元二次方程的根,于是,我們在不解方程的情況下,只要知道二次函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即可.但是在圖象上我們很難準(zhǔn)確地求出方程的解,所以要進(jìn)行估算.本節(jié)課我們將學(xué)習(xí)利用二次函數(shù)的圖象估計(jì)一元二次方程的根.
二次函數(shù)教案15
教學(xué)目標(biāo):
1. 1. 理解二次函數(shù)的意義;會用描點(diǎn)法畫出函數(shù)y=ax2的圖象,知道拋物線的有關(guān)概念;
2. 2. 通過變式教學(xué),培養(yǎng)學(xué)生思維的敏捷性、廣闊性、深刻性;
3. 3. 通過二次函數(shù)的教學(xué)讓學(xué)生進(jìn)一步體會研究函數(shù)的一般方法;加深對于數(shù)形結(jié)合思想認(rèn)識。
教學(xué)重點(diǎn):二次函數(shù)的意義;會畫二次函數(shù)圖象。
教學(xué)難點(diǎn):描點(diǎn)法畫二次函數(shù)y=ax2的圖象,數(shù)與形相互聯(lián)系。
教學(xué)過程設(shè)計(jì):
一. 創(chuàng)設(shè)情景、建模引入
我們已學(xué)習(xí)了正比例函數(shù)及一次函數(shù),現(xiàn)在來看看下面幾個例子:
1.寫出圓的半徑是R(CM),它的面積S(CM2)與R的關(guān)系式
答:S=πR2. ①
2.寫出用總長為60M的籬笆圍成矩形場地,矩形面積S(M2)與矩形一邊長L(M)之間的關(guān)系
答:S=L(30-L)=30L-L2 ②
分析:①②兩個關(guān)系式中S與R、L之間是否存在函數(shù)關(guān)系?
S是否是R、L的一次函數(shù)?
由于①②兩個關(guān)系式中S不是R、L的'一次函數(shù),那么S是R、L的什么函數(shù)呢?這樣的函數(shù)大家能不能猜想一下它叫什么函數(shù)呢?
答:二次函數(shù)。
這一節(jié)課我們將研究二次函數(shù)的有關(guān)知識。(板書課題)
二. 歸納抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常數(shù),a≠0) ,
那么,y叫做x的二次函數(shù).
注意:(1)必須a≠0,否則就不是二次函數(shù)了.而b,c兩數(shù)可以是零.(2) 由于二次函數(shù)的解析式是整式的形式,所以x的取值范圍是任意實(shí)數(shù).
練習(xí):1.舉例子:請同學(xué)舉一些二次函數(shù)的例子,全班同學(xué)判斷是否正確。
2.出難題:請同學(xué)給大家出示一個函數(shù),請同學(xué)判斷是否是二次函數(shù)。
。ㄈ魧W(xué)生考慮不全,教師給予補(bǔ)充。如: ; ; ; 的形式。)
。ㄍㄟ^學(xué)生觀察、歸納定義加深對概念的理解,既培養(yǎng)了學(xué)生的實(shí)踐能力,有培養(yǎng)了學(xué)生的探究精神。并通過開放性的練習(xí)培養(yǎng)學(xué)生思維的發(fā)散性、開放性。題目用了一些人性化的詞語,也增添了課堂的趣味性。)
由前面一次函數(shù)的學(xué)習(xí),我們已經(jīng)知道研究函數(shù)一般應(yīng)按照定義、圖象、性質(zhì)、求解析式幾個方面進(jìn)行研究。二次函數(shù)我們也會按照定義、圖象、性質(zhì)、求解析式幾個方面進(jìn)行研究。
。ㄔ谶@里指出學(xué)習(xí)函數(shù)的一般方法,旨在及時進(jìn)行學(xué)法指導(dǎo);并將此方法形成技能,以指導(dǎo)今后的學(xué)習(xí);進(jìn)一步培養(yǎng)終身學(xué)習(xí)的能力。)
三. 嘗試模仿、鞏固提高
讓我們先從最簡單的二次函數(shù)y=ax2入手展開研究
1. 1. 嘗試:大家知道一次函數(shù)的圖象是一條直線,那么二次函數(shù)的圖象是什么呢?
請同學(xué)們畫出函數(shù)y=x2的圖象。
。▽W(xué)生分別畫圖,教師巡視了解情況。)
【二次函數(shù)教案】相關(guān)文章:
數(shù)學(xué)《二次函數(shù)》優(yōu)秀教案03-06
初中二次函數(shù)教案01-10
二次函數(shù)的頂點(diǎn)課件06-27
《二次函數(shù)》教學(xué)反思07-19
數(shù)學(xué)二次函數(shù)教學(xué)反思06-30
函數(shù)的奇偶性教案10-31
反比例函數(shù)教案01-15
函數(shù)教學(xué)教案設(shè)計(jì)05-16
二次根式教案08-07
二次根式教案05-15